CONCEPT: RATE CONSTANT UNITS

	 Units of the rate constant 	(k) dif	iffer depending	on the overall	reaction	
--	--	---------	-----------------	----------------	----------	--

Rate	Con	stant	(ĸ)	Units
IVULU	~~	JLUIT	1111	Ollica

•Rate constant (k) _____ are as follows:

Overall Reaction Order	Units of Rate Constant (κ)
Order Reaction	or ()
Order Reaction	or ()
Order Reaction	or ()

 Note that all contain 	as part of the units
Troto that all contain	as part or the units

□ The _____ of the unit *exponents* indicates the overall reaction order.

EXAMPLE: What are the rate constant units for the following rate law? $v = k \text{ [HI]}^2$.

PRACTICE: Determine the units for each of the 3 rate constants below in the enzyme-catalyzed reaction.

*k*₁ units: _____

k-1 units: _____

$$E + S \xrightarrow{K_1} ES \xrightarrow{K_2} E + P$$

*k*₂ units: _____