Fraction of Ligand-Binding-Sites Occupied by Ligand (θ)

- Fractional saturation (θ or Y): fraction of _____ (or saturated) ligand-binding-sites in a protein sample.
- •θ: ratio of occupied proteins to total protein; reveals _____ (%) of occupied ligand-binding-sites on a protein.
 - \Box Values of θ range from ____ (when *no* **L** is bound) to ____ (when *all* binding sites are bound by **L**).
 - \square Recall: $K_d = [L]$ when $\theta = ____,$ or $____%$ of all the available ligand-binding-sites are *occupied* by ligand.
 - □ Saturation curves or Protein-ligand-binding graphs plot _____ on the y-axis and [L] on the x-axis.

EXAMPLE: Protein-Ligand-Binding Plot.

$$\Theta = Y = \frac{\text{Protein Binding Sites bound by Ligand}}{\text{Total Protein Binding Sites}} = \frac{\text{[PL]}}{\text{[PL]+[P]}}$$

Max θ

- For ALL protein-ligand interactions, the equivalent of the " V_{max} " is 100% L-binding (max $\theta =$ ___).
 - □ Recall: V_{max} is subject to change with different enzymes; HOWEVER, max θ is *always* _____.
 - □ Recall: K_m is similar to K_d, so the _____ the K_d value, the *stronger* the protein's affinity for that ligand.

EXAMPLE: Which protein has a *stronger* affinity to the ligand?

- a) Protein A.
- b) Protein B.

- •Through algebraic rearrangements & substitutions of previous equations, θ can also defined in another way:
 - \Box This mathematically relates θ to AND it *resembles* the Michaelis-Menten Equation.

$$\theta = \mathbf{Y} = \frac{[PL]}{[PL] + [P]} = \frac{()[L]}{[L] + K_d}$$
 ["V_{max}" = Max $\theta = 1$]

"V_{max}" = Max
$$\theta$$
 = 1

$$V_0 = \frac{V_{\text{max}}[S]}{[S] + K_m}$$

EXAMPLE: If an antibody binds to an antigen (ligand) with a K_d of 5 x 10-8 M, what concentration of antigen will $\theta = 0.2$?

- a) 1.25 x 10-8 M.
 - c) 3.8 x 10₄ M.
- b) 1.25 x 10-6 M.
- d) $2.1 \times 10^{-2} M$.

PRACTICE: Which of the following statements about protein-ligand binding is correct?

- a) The Ka is equal to the concentration of ligand when all the binding sites are occupied.
- b) The larger the K_a , the stronger the affinity a protein has for its ligand.
- c) The larger the Ka, the faster the binding.
- d) The Ka is independent of conditions including salt concentrations and pH.

PRACTICE: Consider the following graph for parts A-C.

- A) What is the protein-ligand dissociation constant (K_d) for protein X?
 - a) 2 µM.
- b) 4 μM.
- c) 6 µM.
- d) 8 μM.
- B) What is the protein-ligand dissociation constant (K_d) for protein Y?
 - a) 2 μM.
- b) 4 μM.
- c) 6 µM.
- d) 8 μM.

- C) Which protein has a greater affinity for ligand A?
 - a) Protein X.
- b) Protein Y.

PRACTICE: Match the dissociation constants in the table below to the appropriate curves on the graph.

Protein Name	<u>K</u> d (M)
Α	2 x 10 ⁻⁶
В	1 x 10 ⁻⁷
С	1 x 10 ⁻⁶
D	4 x 10 ⁻⁸
E	9 x 10 ⁻⁷

PRACTICE: Use the table below to answer questions A, B & C below.

A) Which protein has a greater affinity for their ligand?

- a) Protein 1.
- b) Protein 2.

[Ligand] (nM)	q of Protein 1	q of Protein 2
0.5	0.2	0.05
1	0.5	0.2
2	0.8	0.5
3	0.9	0.8

B) According to the data in the table, what is the dissociation constant (Kd) for Protein 1?

C) According to the data in the table, what is the association constant (K_a) for Protein 2?

PRACTICE: A sample of cells has a total protein-receptor concentration of 10 mM. 25% of the protein-receptors are occupied with ligand when the concentration of free ligand is 15 mM. Calculate the K_d for the receptor-ligand interaction.

- a) 5 mM.
- b) 67 mM.
- c) 45 mM.
- d) 7.5 mM.
- e) 2.5 mM.