CONCEPT: ENZYMES

• Enzymes: globular proteins that _____ (or speed up the rate) of chemical reactions _____ being consumed.

□ _____ are enzymes that are *RNA catalysts*.

□ Reactants (or ______ site.

EXAMPLE: Fill-in the blanks.

PRACTICE: Hexokinase uses ATP to convert glucose into glucose-6-phosphate during glycolysis. Which option is true?

a) Hexokinase is a fibrous protein.

- c) Hexokinase is a molecular catalyst.
- b) Hexokinase is permanently altered in the enzymatic reaction.
- d) Hexokinase & all enzymes are proteins.

Enzymes Get Reactions to Equilibrium Faster

•A common misconception is that enzymes always convert ______% of substrate into product; this is not true.

□ Instead, enzymes only help reactions get substrates/products to their _____ concentrations *faster*!

PRACTICE: Which graph below corresponds with a reaction that has an equilibrium constant less than 1 ($K_{eq} < 1$)?

CONCEPT: ENZYMES

PRACTICE: The enzyme catalase converts hydrogen peroxide into water and oxygen gas. Which of the following is true?

- a) All enzymes utilize ATP to catalyze reactions. c) Catalase stops catalyzing when reaction reaches equilibrium.
- b) All hydrogen peroxide is converted to products. d) Catalase catalyzes forward & reverse reactions at equilibrium.

Enzymes Lower E_A

- •Enzymes speed up reactions by lowering their energy of ______ (E_A or ΔG[‡]).
 - □ Energy of Activation: energy difference between substrates & ______ state required to initiate a reaction.
 - □ *Transition state* (‡): an unstable transient entity at the local ______ peak energy point of a reaction.

Enzymes do NOT affect: 1) the ______ favorability (no change to ΔG) or....

2) the _____ constant (no change to K_{eq}).

PRACTICE: Which of the following is the best description of what an enzyme does?

- a) It allows a chemical reaction to proceed extremely fast.
- b) It increases the rate at which a chemical reaction reaches equilibrium relative to its uncatalyzed rate.
- c) It makes a reaction thermodynamically favorable to allow it to proceed faster.

PRACTICE: Which of the following best describes how enzymes catalyze reactions?

- a) Alter the equilibrium constant (K_{eq}) of a reaction.
- d) Force reactions to proceed in only one direction.
- b) Decrease the thermodynamic free energy (ΔG) of a reaction.
- e) Stabilizing the transition state.
- c) Change nonspontaneous reactions into spontaneous reactions.
- f) c & d.