CONCEPT: K_{CAT} - Catalytic Constant (*k*_{cat}): _____ constant for the *rate-limiting*-step (_____-step) of an enzyme-catalyzed reaction. - \Box A reaction can't go any faster than its *slowest* step, so k_{cat} dictates _____, which only occurs at *saturating* [S]. - \Box For simple enzyme-catalyzed reactions, $k_{cat} = k_2$, ($k_2 = \underline{\hspace{1cm}}$ formation rate constant). **EXAMPLE:** Determine the rate law that uses k_{cat} . Number = ## Calculating & Interpreting K_{cat} - •Both $[E]_T \& V_{max}$ must be known to k_{cat} . - k_{cat} : max amount of _____ converted to product per second by one single enzyme molecule under saturating [S]. - \Box k_{cat} is also called the _____ number & has units of seconds⁻¹ (s⁻¹). - \Box The _____ of k_{cat} (1/ k_{cat}): has units of seconds & represents *time* required for _____ catalytic event. - \Box k_{cat} alone is used to measure _____ catalytic efficiency only under saturating [S]. | Enzyme | Function | k_{cat} = Turnover Number (s ⁻¹)
*Under Saturating [S] | $\frac{1}{k_{\text{cat}}}$ (s) | |----------------------|---|--|--------------------------------| | Catalase | Converts H ₂ O ₂ to H ₂ O & O ₂ | 40,000,000 | 2.5 x 10 ⁻⁸ | | Acetylcholinesterase | Regenerates acetycholine from acetate and choline. | 14,000 | 7.1 x 10 ⁻⁵ | | Chymotrypsin | Peptidase: Cleaves c-terminal peptide bond of F, Y & W | 100 | 0.01 | | DNA Polymerase I | DNA Replication | 15 | 0.07 | **EXAMPLE:** What is the turnover number for carbonic anhydrase if $V_{max} = 60,000$ M/s and $[E]_T = 0.1$ M? - a) 1.67 x 10⁻⁶ s⁻¹ - b) 600,000 s⁻¹ c) 0.08 s⁻¹ d) 6,000 s⁻¹ **PRACTICE:** To calculate the turnover number of an enzyme, you need to know: - a) Total enzyme concentration $[E]_T$. - c) V₀ of the catalyzed reaction at low [S]. - e) Both a & b. - b) V_0 of the catalyzed reaction when [S] >> K_m . d) K_m of the enzyme. ## **CONCEPT: KCAT** **PRACTICE:** If 10 μ g of an enzyme (MW = 50,000 g/mol) is added to a solution containing a [substrate] 100 times greater than the K_m , it catalyzes the conversion of 75 μ mol of substrate into product in 3 min. What is the enzyme's turnover #? a) 1.25 x 10⁵ min⁻¹. b) 2.5 x 10⁴ min⁻¹. c) 1.5 x 10² min⁻¹. d) 3.5 x 10⁶ min⁻¹. ## K_{cat} vs K_m | $ullet$ Recall: k_{cat} is a measure of the $maximum$ | | efficiency of an enzyme under | | [S]. | |---|------------------|-------------------------------|------------------------|----------------| | $\hfill\Box$ K_m is a measure | of the binding | an enzyme h | nas for its substrate. | | | □ Enzyme | to its substrate | e and enzyme | are two completely s | eparate events | **PRACTICE:** Studies with mutated forms of an enzyme show that changing some active-site amino acids decrease the enzyme's turnover number (k_{cat}) but do not affect the K_m of the reaction. What is the best interpretation of these results? - a) The K_m of the enzyme for the substrate does not depend on amino acid side chains found in the active site. - b) The two terms, K_m and turnover number, are inversely proportional. - c) The transition state for this reaction is formed prior to the formation of the ES complex. - d) Amino acids involved in stabilizing transition-state complexes can be different than those affecting the ES-complex. **PRACTICE:** The turnover number for an enzyme is known to be 5000 min⁻¹. From the following set of data, determine both the K_m and the total amount of enzyme E_T . A) What is the K_m of the enzyme? a) 1 mM. b) 2 mM. c) 4 mM. d) 1000 mM. | [Substrate], mM | Initial Velocity, µmol/min | | | |-----------------|----------------------------|--|--| | 1 | 167 | | | | 2 | 250 | | | | 4 | 334 | | | | 6 | 376 | | | | 100 | 498 | | | | 1,000 | 499 | | | B) What is the total amount of enzyme? a) $0.001 \, \mu M$. b) $0.01 \, \mu M$. c) 0.1 µM. d) 10 μM.