CONCEPT: K_{CAT}

- Catalytic Constant (*k*_{cat}): _____ constant for the *rate-limiting*-step (_____-step) of an enzyme-catalyzed reaction.
 - \Box A reaction can't go any faster than its *slowest* step, so k_{cat} dictates _____, which only occurs at *saturating* [S].
 - \Box For simple enzyme-catalyzed reactions, $k_{cat} = k_2$, ($k_2 = \underline{\hspace{1cm}}$ formation rate constant).

EXAMPLE: Determine the rate law that uses k_{cat} .

Number =

Calculating & Interpreting K_{cat}

- •Both $[E]_T \& V_{max}$ must be known to k_{cat} .
- k_{cat} : max amount of _____ converted to product per second by one single enzyme molecule under saturating [S].
 - \Box k_{cat} is also called the _____ number & has units of seconds⁻¹ (s⁻¹).
 - \Box The _____ of k_{cat} (1/ k_{cat}): has units of seconds & represents *time* required for _____ catalytic event.
 - \Box k_{cat} alone is used to measure _____ catalytic efficiency only under saturating [S].

Enzyme	Function	k_{cat} = Turnover Number (s ⁻¹) *Under Saturating [S]	$\frac{1}{k_{\text{cat}}}$ (s)
Catalase	Converts H ₂ O ₂ to H ₂ O & O ₂	40,000,000	2.5 x 10 ⁻⁸
Acetylcholinesterase	Regenerates acetycholine from acetate and choline.	14,000	7.1 x 10 ⁻⁵
Chymotrypsin	Peptidase: Cleaves c-terminal peptide bond of F, Y & W	100	0.01
DNA Polymerase I	DNA Replication	15	0.07

EXAMPLE: What is the turnover number for carbonic anhydrase if $V_{max} = 60,000$ M/s and $[E]_T = 0.1$ M?

- a) 1.67 x 10⁻⁶ s⁻¹
- b) 600,000 s⁻¹

c) 0.08 s⁻¹

d) 6,000 s⁻¹

PRACTICE: To calculate the turnover number of an enzyme, you need to know:

- a) Total enzyme concentration $[E]_T$.
- c) V₀ of the catalyzed reaction at low [S].
- e) Both a & b.

- b) V_0 of the catalyzed reaction when [S] >> K_m . d) K_m of the enzyme.

CONCEPT: KCAT

PRACTICE: If 10 μ g of an enzyme (MW = 50,000 g/mol) is added to a solution containing a [substrate] 100 times greater than the K_m , it catalyzes the conversion of 75 μ mol of substrate into product in 3 min. What is the enzyme's turnover #?

a) 1.25 x 10⁵ min⁻¹.

b) 2.5 x 10⁴ min⁻¹.

c) 1.5 x 10² min⁻¹.

d) 3.5 x 10⁶ min⁻¹.

K_{cat} vs K_m

$ullet$ Recall: k_{cat} is a measure of the $maximum$		efficiency of an enzyme under		[S].
$\hfill\Box$ K_m is a measure	of the binding	an enzyme h	nas for its substrate.	
□ Enzyme	to its substrate	e and enzyme	are two completely s	eparate events

PRACTICE: Studies with mutated forms of an enzyme show that changing some active-site amino acids decrease the enzyme's turnover number (k_{cat}) but do not affect the K_m of the reaction. What is the best interpretation of these results?

- a) The K_m of the enzyme for the substrate does not depend on amino acid side chains found in the active site.
- b) The two terms, K_m and turnover number, are inversely proportional.
- c) The transition state for this reaction is formed prior to the formation of the ES complex.
- d) Amino acids involved in stabilizing transition-state complexes can be different than those affecting the ES-complex.

PRACTICE: The turnover number for an enzyme is known to be 5000 min⁻¹. From the following set of data, determine both

the K_m and the total amount of enzyme E_T .

A) What is the K_m of the enzyme?

a) 1 mM.

b) 2 mM.

c) 4 mM.

d) 1000 mM.

[Substrate], mM	Initial Velocity, µmol/min		
1	167		
2	250		
4	334		
6	376		
100	498		
1,000	499		

B) What is the total amount of enzyme?

a) $0.001 \, \mu M$.

b) $0.01 \, \mu M$.

c) 0.1 µM.

d) 10 μM.