CONCEPT: HPLC

•	(High Perf	ormance Liquid	Chromatography)	· separates mole	cules under high	pressure &	resolution columns
·	\ <u></u> 9	orriarioo <u>E</u> iqaia	<u> </u>	. ooparatoo molo	oaloo allaol iligii	procedure &	10001ation colaining

- □ Uses automated computerized instrumentation for extremely ______ separation of molecules.
- □ _____ resolution columns create more interaction sites & *greater* resolving/separation power.
- ☐ High increases the *speed* of the separation through the high-resolution column matrix.

Normal-Phase HPLC Purifies Polar Molecules

Phase HPLC: Stationary phase is _____ and liquid mobile phase is nonpolar.

□ *Polar* molecules stay in the column *longer* while molecules elute & earlier.

EXAMPLE: Normal-phase HPLC.

PRACTICE: What is the order of elution (first → last) of the following amino acids in normal-phase HPLC: Phe, Gly, Glu.

- a) Phe \rightarrow Glv \rightarrow Glu.
- c) Glu → Phe → Gly.
- e) Gly → Phe → Glu.

- b) Phe \rightarrow Glu \rightarrow Gly.
- d) Glu \rightarrow Gly \rightarrow Phe.
- f) Gly \rightarrow Glu \rightarrow Phe.

Reverse Phase HPLC Purifies Nonpolar Molecules

Reverse Phase HPLC is the of normal phase HPLC
--

- □ A *nonpolar* stationary phase nonpolar molecules in the column via the hydrophobic effect.
- □ A *polar* liquid _____ phase flows over the stationary phase.
- □ Nonpolar molecules remain in the column longer while more _____ & soluble molecules elute faster & earlier.

EXAMPLE: Reverse-phase HPLC.

PRACTICE: What is the order of elution (first → last) of the following amino acids in reverse-phase HPLC: Ala, Arg, Leu.

- a) Leu \rightarrow Ala \rightarrow Arg.
- c) Arg \rightarrow Leu \rightarrow Ala.
- e) Ala \rightarrow Leu \rightarrow Arg.

- b) Leu \rightarrow Arg \rightarrow Ala.
- d) $Arg \rightarrow Ala \rightarrow Leu$. f) $Ala \rightarrow Arg \rightarrow Leu$.

CONCEPT: HPLC

PRACTICE: What is the basis for the separation of proteins by the following techniques?

a) Gel-filtration chromatography: _____

b) Affinity chromatography: _____

c) Ion-exchange chromatography: _____

d) Reverse phase HPLC: _____

HPLC Chromatogram

●HPLC separation results show up in a data plot called a ______.

□ Plots elution _____ (X-axis) vs. the light _____ (y-axis) for each separated molecule.

□ Absorbance indicates the _____ of separated molecule.

EXAMPLE: HPLC process & chromatogram.

PRACTICE: In the following HPLC chromatogram, which amino acid was the third substance eluted from the column?

a) Aspartic acid.

c) Phenylalanine.

b) Leucine.

d) Glutamic Acid.