CONCEPT: HPLC | • | (High Perf | ormance Liquid | Chromatography) | · separates mole | cules under high | pressure & | resolution columns | |---|-------------|--------------------------|-----------------|------------------|---------------------|-------------|----------------------| | · | \ <u></u> 9 | orriarioo <u>E</u> iqaia | <u> </u> | . ooparatoo molo | oaloo allaol iligii | procedure & | 10001ation colaining | - □ Uses automated computerized instrumentation for extremely ______ separation of molecules. - □ _____ resolution columns create more interaction sites & *greater* resolving/separation power. - ☐ High increases the *speed* of the separation through the high-resolution column matrix. #### Normal-Phase HPLC Purifies Polar Molecules Phase HPLC: Stationary phase is _____ and liquid mobile phase is nonpolar. □ *Polar* molecules stay in the column *longer* while molecules elute & earlier. ## **EXAMPLE:** Normal-phase HPLC. **PRACTICE:** What is the order of elution (first → last) of the following amino acids in normal-phase HPLC: Phe, Gly, Glu. - a) Phe \rightarrow Glv \rightarrow Glu. - c) Glu → Phe → Gly. - e) Gly → Phe → Glu. - b) Phe \rightarrow Glu \rightarrow Gly. - d) Glu \rightarrow Gly \rightarrow Phe. - f) Gly \rightarrow Glu \rightarrow Phe. # Reverse Phase HPLC Purifies Nonpolar Molecules | Reverse Phase HPLC is the of normal phase HPLC | |--| |--| - □ A *nonpolar* stationary phase nonpolar molecules in the column via the hydrophobic effect. - □ A *polar* liquid _____ phase flows over the stationary phase. - □ Nonpolar molecules remain in the column longer while more _____ & soluble molecules elute faster & earlier. ## **EXAMPLE:** Reverse-phase HPLC. **PRACTICE:** What is the order of elution (first → last) of the following amino acids in reverse-phase HPLC: Ala, Arg, Leu. - a) Leu \rightarrow Ala \rightarrow Arg. - c) Arg \rightarrow Leu \rightarrow Ala. - e) Ala \rightarrow Leu \rightarrow Arg. - b) Leu \rightarrow Arg \rightarrow Ala. - d) $Arg \rightarrow Ala \rightarrow Leu$. f) $Ala \rightarrow Arg \rightarrow Leu$. ### **CONCEPT: HPLC** PRACTICE: What is the basis for the separation of proteins by the following techniques? a) Gel-filtration chromatography: _____ b) Affinity chromatography: _____ c) Ion-exchange chromatography: _____ d) Reverse phase HPLC: _____ ### **HPLC Chromatogram** ●HPLC separation results show up in a data plot called a ______. □ Plots elution _____ (X-axis) vs. the light _____ (y-axis) for each separated molecule. □ Absorbance indicates the _____ of separated molecule. **EXAMPLE:** HPLC process & chromatogram. **PRACTICE:** In the following HPLC chromatogram, which amino acid was the third substance eluted from the column? a) Aspartic acid. c) Phenylalanine. b) Leucine. d) Glutamic Acid.