
CONCEPT: PENTOSE PHOSPHATE PATHWAY

- Pentose phosphate pathway glucose 6-phosphate enters, makes 2 NADPH and ribulose 5-phosphate
 - □ Produce ribose 5-phosphate for nucleotide synthesis and H synthesis
 - □ Produce erythrose 4-phosphate for FWY synthesis
 - □ Can completely oxidize glucose
 - ☐ Source of NADPH, uses NADP+ instead of NAD+
- 1. Glucose 6-phosphate dehydrogenase glucose 6-phosphate + NADP+ → 6-phosphoglucono-δ-lactone + NADPH
- 2. Lactonase 6-phosphoglucono- δ -lactone \rightarrow 6-phosphogluconate
- 3. 6-phosphogluconate dehydrogenase 6-phosphogluconate + NADP+ → ribulose 5-phosphate + NADPH
- 4. Phosphopentose isomerase ribulose 5-phosphate → ribose 5-phosphate

- Transketolases transfer 2 carbon units
 - □ Use thymine pyrophosphate (TPP) as their transfer agent
 - □ Xyulose 5-phosphate + ribose 5-phosphate → G3P + sedoheptulose 7-phosphate (7C)
- Transaldolases transfers 3 carbon units
 - □ G3P + sedoheptulose 7-phosphate → fructose 6-phosphate + erythrose 4-phosphate (4C)

- NADPH helps prevent oxygen toxicity from super oxide radicals with glutathione reductase
 - \Box Superoxide dismutase converts O_2^- to H_2O_2 , and glutathione reductase peroxidase uses glutathione to form H_2O
 - □ Glutathione reductase uses NADPH to convert glutathione back into active (reduced) form
 - □ NADPH inhibits glucose entry into the pentose phosphate pathway via feedback inhibition