CONCEPT: ALLOSTERIC REGULATION

- •Recall: Metabolic _____: a series of chemical reactions related to a critical biological process (ex. glycolysis).
- Most enzymes in a metabolic pathway follow the Michaelis-Menten kinetics that we've already covered; HOWEVER....
 -most metabolic pathways have at least one enzyme that has an even greater effect on the _____.
 - □ These enzymes are called enzymes & display *allosteric kinetics*.

Allosteric Enzymes

- •______ *enzymes*: complex, *highly regulated* enzymes monitoring flow of biochemicals in *metabolic pathways*.
 - □ Allosteric enzymes catalyze/control _____ steps in metabolic pathways.

- Allosteric enzymes usually have _____ polypeptide chains (quaternary structure) that each have active sites.
- Allosteric enzymes are called so because they're regulated by allosteric _____.
 - □ *Allosteric effectors*: small molecules that bind to sites on the enzyme to *regulate* its activity.

PRACTICE: Allosteric enzymes:

- a) Are regulated primarily by covalent modifications.
- b) Usually have more than one polypeptide chain.
- d) Usually only have one active site.
- e) Usually show Michaelis-Menten kinetics.
- c) Usually catalyze multiple reactions within a metabolic pathway.