## **CONCEPT: EDMAN DEGRADATION REACTION EFFICIENCY**

| <ul><li>Edman degradation: only practical for small peptides with</li></ul> | <i>_ than ∼50</i> amino acid residues…t | out why?   |
|-----------------------------------------------------------------------------|-----------------------------------------|------------|
| □ Reaction efficiency per cycle for most modern Edman D                     | egradation Sequenators is about _       | <u></u> %. |

□ So, in each cycle, about \_\_\_\_\_% of the peptides *fail* to release their amino acid in the *correct* cycle.

**EXAMPLE:** Edman degradation reaction efficiency.



- Unwanted PTH-amino acid \_\_\_\_\_-products accumulate with each cycle & obscure the results.
  - □ \_\_\_\_\_\_ proteins mean *more* Edman cycles needed & *more* side-products accumulating.
  - □ *Most* naturally existing proteins are long; therefore, solution is to \_\_\_\_\_\_ proteins *before* Edman Degradation.

## **Calculating Cumulative Yield**

- •\_\_\_\_\_ yield is calculated from the *reaction efficiency*.
  - □ Cumulative yield: relative \_\_\_\_\_ of a specific product (ex. PTH-amino acid) obtained in a chemical reaction.
- •Equation below expresses the relationship between 1) reaction efficiency, 2) # of Edman cycles, & 3) cumulative yield.

 $(Reaction\ Efficiency\ Per\ Cycle)^{\#\ of\ Cycles} = Cumulative\ Yield$ 

- •Accurate protein sequencing requires a *high* cumulative yield usually \_\_\_\_\_ than 60%.
  - □ 60% of the products of the Edman cycle are the *correct* PTH-amino acid.

**EXAMPLE:** Let's say each reaction cycle of the Edman Degradation procedure has a reaction efficiency of 99%, where 1% of each reaction cycle produces unwanted PTH-amino acid side-products. Calculate the total cumulative yield of the correct PTH-amino acid immediately after the 50<sup>th</sup> Edman degradation cycle.

| CONCEPT: EDMAN DEGRADATION REACTION EFFICIENCY  PRACTICE: Assuming 98% reaction efficiency, calculate the total cumulative yield of the correct PTH-amino acid at the 50th Edman degradation cycle.                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRACTICE: A) A peptide with the primary structure Lys-Arg-Pro-Leu-lle-Asp-Gly-Ala is sequenced by the Edman degradation procedure. If each Edman cycle is 93% efficient, what percentage of the PTH-amino acids in the fourth Edman cycle will be PTH-Leu? |
| B) What percentage of the PTH-amino acids in the eighth Edman cycle will be PTH-Ala?                                                                                                                                                                       |