CONCEPT: HEMOGLOBIN COOPERATIVITY ## Hemoglobin Displays Positive Cooperativity Hemoglobin O₂-binding displays ______ behavior (S-shaped curve) due to positive cooperativity. • Recall: Positive Cooperativity: binding of one L molecule makes it for other L molecules to bind the proteins. □ *Positive Cooperativity*: binding of **L** to a subunit promotes neighboring subunits to take on the _____ state. • Cooperativity requires multiple subunits, so ________O2-binding is NOT sigmoidal (has rectangular hyperbola). **EXAMPLE:** Mb vs. Hb O₂-binding. #### Concerted & Sequential Models Explain Hb's Positive Cooperativity • Recall: _____ models can explain an allosteric protein's positive cooperativity & sigmoidal curvature: ●Hemoglobin's O₂-binding behavior is best explained via a ______ of concerted & sequential models. #### **CONCEPT: HEMOGLOBIN COOPERATIVITY** #### **Oxygen-Binding Curves** - Oxygen-Binding Curves: plot fractional saturation (____ or ___) against the partial pressure of O₂ (____). - □ Since O₂ is a gas, partial pressure of O₂ (pO₂) is a standard way to express _____. - \Box pO₂ is *directly* ______ to [O₂]. \Box Kd = ____ on an oxygen-binding curve. - •O₂ itself acts as a homotropic allosteric _____(+) to induce positive cooperativity in Hb's subunits. O2 is a _____ allosteric activator that _____ additional binding of O2 to Hb. # Positive Cooperativity Makes Hb a Better O₂ Transporter than Mb - •Recall: ______ Cooperativity: binding of O₂ to Hb stimulates even _____ O₂ binding. - □ Cooperativity allows _____ to be a *better* deliverer/transporter of O₂ to the tissues than _____ for two reasons: - 1 Mb cannot transport O₂ because it has a _____ K_d (_____ O₂ affinity) & would NOT release O₂ in the tissues. - 2 Threshold effect in Hb allows Hb to release _____ O2 in tissues that work "harder" and have lower O2. **EXAMPLE:** Which enzyme has a *stronger* affinity for O₂? - a) Myoglobin. - b) Hemoglobin. pO₂ in Lungs ≈ 100 torr Hemoglobin Saturation in Lungs ≈ 98% Myoglobin Saturation in Lungs ≈ 99% Lungs pO₂ in Tissues ≈ 20 torr Hemoglobin Saturation in Tissues ≈ 32% Myoglobin Saturation in Tissues ≈ 95% • Heterotropic allosteric effectors (ex. _____) further enhance hemoglobin's release of O₂ in the tissues. ### **CONCEPT:** HEMOGLOBIN COOPERATIVITY **PRACTICE:** In the binding of oxygen to myoglobin, the relationship between the concentration of oxygen and the fraction of binding sites occupied can best be described as: - a) Hyperbolic. - b) Linear with a negative slope. - c) Linear with a positive slope. - d) Random. - e) Sigmoidal. **PRACTICE:** Oxygen is a ______ allosteric _____ that promotes additional O₂ binding to hemoglobin. - a) Heterotropic, Repressor. - b) Homotropic, Activator. - c) Heterotropic, Activator. - d) Homotropic, Repressor. **PRACTICE:** The binding of Oxygen to stabilize the R-state of Hemoglobin is best explained by which model(s)? - a) Concerted Model. - b) Sequential Model. - c) Neither. - d) Combination of Both.