CONCEPT: ANFINSEN EXPERIMENT

●In the 1950's, Christian Anfinsen performed experiments that demonstrated major principles:	state.
structure determines tertiary structure.	
2) A protein folds into its native conformation, which is its most	
•Used urea & β-ME to affect the protein structure of A (RNase A).	
/removal of both urea & β-ME respectively/renatures RNase A.	
□ Subsequent removal β-ME (urea still present) results in a scrambled protein with	_ disulfide bonds

EXAMPLE: The Anfinsen Ribonuclease A Experiment.

PRACTICE: Which of the following conclusions could Anfinsen draw from his RNase A experiment?

- a) Disulfide bridges are unnecessary for the function of RNase A.
- b) Kinetics is the main barrier to a protein adopting its native fold.
- c) Proteins spontaneously adopt their native fold, which specifies location of disulfide bridges.
- d) RNase activity cannot be destroyed by urea alone at any concentration.

CONCEPT: ANFINSEN EXPERIMENT

PRACTICE: What is likely to happen to Ribonuclease A if it is treated with both urea & β-mercaptoethanol?

- a) RNase A will denature and oxidize its disulfides to generate sulfhydryl groups.
- b) RNase A renatures but disulfide bonds are formed randomly between Cys residues.
- c) RNase A will denature and reduce its disulfides to generate sulfhydryl groups.
- d) RNase A will denature and oxidize its sulfhydryl groups to generate disulfides.

PRACTICE: Which of the following occurred when RNase A properly refolded from a denatured state?

- a) The primary structure of the protein was rearranged.
- b) Most of the charged, hydrophilic residues were found buried in the core of the protein.
- c) The entropy of the protein structure itself was significantly increased.
- d) None of the above.

PRACTICE: Which statement best supports the theory that primary protein structure dictates folding into its native state?

- a) RNase A loses all enzymatic activity upon denaturing in 8M urea.
- b) RNase A regains enzymatic activity upon removing urea & β-ME.
- c) Purified RNase A has 100% enzymatic activity in vitro.
- d) A reducing agent such as β-ME destroys disulfide bonds & eliminates RNase A enzymatic activity.