CONCEPT: METABOLIC REGULATION

- Substrate concentration in cells is close to K_m of their respective enzymes; ensures enzyme activity fluctuates with $\Delta[S]$
 - □ Elasticity coefficient slope of line on Michaelis-Menten, most elastic in 0-K_m range
 - □ ADP and ATP concentration don't fluctuate too much in a cell, AMP concentration can fluctuate drastically
 - AMP-activated protein kinase has a wide range of effects on metabolism (fatty acid oxidation in the heart)
 - □ Enzymes of metabolic pathways that are not readily reversible are generally the ones that are regulated

- Glycolysis and gluconeogenesis must be tightly controlled, and regulated in conjunction, to prevent futile cycles
- Hexokinase I is the most influential enzyme on the rate of glycolysis, followed by phosphofructokinase-1
 - ☐ Glucose 6-phosphate (the product of hexokinase's reaction with glucose) inhibits hexokinase
- Glucokinase (hexokinase IV) present in liver cells, stored in the nucleus, and has a much higher K_m than hexokinase I
 - □ Glucose causes glucokinase to move from the nucleus to cytoplasm
 - □ Fructose 6-phosphate causes glucokinase to move back into nucleus
 - □ It is NOT inhibited by glucose 6-phosphate, allowing for the supply, not demand, of glucose to gauge rxn rate

