CONCEPT: SEQUENTIAL MODEL

- Sequential (KNF) Model: an allosteric enzyme's subunits undergo ______ T & R State changes (via S induced-fit).
 - □ Subunits of the same allosteric enzyme can be present in different states (______ are allowed).
 - □ In other words, T State to R State transitions do _____ necessarily encompass the *entire* allosteric enzyme.

Positive & Negative Cooperativity of Sequential Model

- •Unlike the concerted model, the sequential model allows for both positive & _____ cooperativity.
 - □ **S** binding to one subunit _____ likelihood of *neighboring* subunits to take on *either* a T or R state.
 - □ *Positive Cooperativity*: binding of **S** on a subunit promotes neighboring subunits to take on the _____ state.
 - □ Negative Cooperativity: binding of **S** on a subunit promotes neighboring subunits to take on the _____ state.

EXAMPLE: Positive & Negative Cooperativity of the Sequential Model.

PRACTICE: True or False: Most allosteric enzymes behave according to the concerted model, not the sequential model.

a) True.

b) False.

CONCEPT: SEQUENTIAL MODEL

Concerted Model vs. Sequential Model

•Most allosteric enzymes behave according to some ______ of the concerted & sequential models.

	Concerted () Model	Sequential () Model	
Concerted (MWC) Model All subunits always in state.	T/R state conversions occur in <i>all</i> subunits.	T/R state conversions occur in each subunit.	Sequential (KNF) Model
No substrate needed for T = R conversion	T/R state conversions do require <i>substrate</i> .	T/R state conversions occur via substrate binding (Fit).	
No hybrids allowed!	hybrids allowed.	Hybrids allowed.	
	Only allows cooperativity.	Allows both positive & cooperativity.	

PRACTICE: Which of the following is not a difference between the Concerted & Sequential models of allosteric enzymes?

- a) The sequential model considers the induced-fit model of substrate binding whereas the concerted model focuses on perturbing the equilibrium between the T and R states.
- b) Positive cooperativity can be explained by the sequential model but not by the concerted model.
- The sequential model allows for subunits to be in different conformations while the concerted model does not.
- d) Negative cooperativity can be explained by the sequential model but not by the concerted model.
- e) Both models can have one or multiple subunits bound to a single enzyme for proper function.
- f) All the above are true.

PRACTICE: The Sequential model for allosteric enzyme behavior:

- a) Cannot account for the reactions that display negative cooperativity.
- b) Postulates binding of substrates & inhibitors by the induced-fit model.
- c) Requires that the conformation of all subunits change simultaneously.
- d) Is conceptually and mathematically simpler than the concerted model.

PRACTICE: Which of the following best describes negative cooperativity?

- a) Binding of one substrate molecule stimulates binding of a second substrate.
- b) Binding of one substrate molecule inhibits binding of a second substrate.
- c) Binding of one substrate molecule leads to negative reaction rates.
- d) Binding of one substrate molecule causes a negative effect/result in the cell.