CONCEPT: DISACCHARIDES

•_____: consists of _____ monosaccharides covalently linked by an O-glycosidic bond.

•Many disaccharides exist, but the most _____ ones are maltose, cellobiose, lactose & sucrose.

PRACTICE: Which of the following contains galactose as one of the sugar subunits?

a) Glucose.

b) Ribose.

c) Maltose.

d) Lactose.

e) Cellobiose.

PRACTICE: Which disaccharide forms a 1,1-glycosidic linkage?

a) Lactose.

c) Maltose.

b) Trehalose.

d) Sucrose.

PRACTICE: What is the identity of the disaccharide below?

a) Cellulose.

e) Sucrose.

b) Lactose.

f) Lactose.

c) Chitin.

g) Cellobiose.

d) Maltose.

h) Glycogen.

CONCEPT: DISACCHARIDES

PRACTICE: The structure of a disaccharide is shown below. Which statement applies?

a) Both sugar rings A and B are in equilibrium with their linear chain forms.

- b) Only sugar ring A is in equilibrium with its linear chain form.
- c) Only sugar ring B is in equilibrium with its linear chain form.
- d) Neither sugar ring is in equilibrium with their linear chain form.
- e) None of the above statements are correct.

CH₂OH

PRACTICE: Name each monosaccharide unit & the glycosidic linkage in the following disaccharide (gentiobiulose).

PRACTICE: Given the following information, draw a Haworth projection for the disaccharide *gentibiose*:

- 1. Gentibiose is a dimer of glucopyranoses.
- 2. The glycosidic linkage is $\beta(1 \rightarrow 6)$.
- 3. The anomeric carbon not involved in the glycosidic linkage is in the α configuration.

