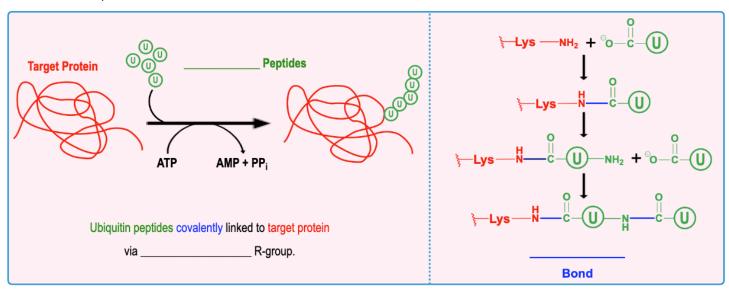
CONCEPT: UBIQUITINATION

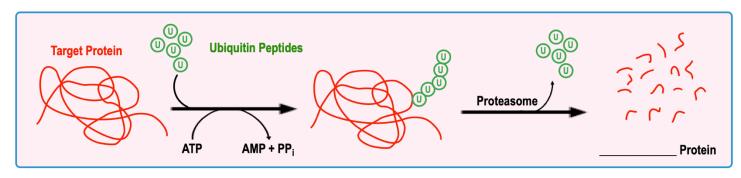

______: a highly conserved and prevalent/ubiquitous small protein (76 amino acid residues).

• *Ubiquitination*: an _____-dependent process involving the *covalent* attachment of *ubiquitin* to a target-protein.

□ R-group of lysine (_____) amino acid residues are susceptible to *ubiquitination*.

□ Multiple ubiquitin peptides link together to form a _____ on the target protein.

EXAMPLE: Ubiquitination.


Ubiquitination Targets Proteins

●Ubiquitination marks proteins for ______ by *proteasomes*.

□ Proteasome: protein *complex* specialized for ______ activity (breaking down proteins).

□ Ubiquitination can _____ cellular protein concentration & therefore can *decrease* an enzyme's _____.

□ Capable of regulating virtually every cellular process.

CONCEPT: UBIQUITINATION	
PRACT	TICE: involves covalent attachment of peptides leading to of the target protein by
a)	Ubiquitination ; Activation ; Proteasome.
b)	Glycosylation ; Degradation ; Ribosome.
c)	Ubiquitination ; Degradation ; Proteome.
d)	Ubiquitination ; Degradation ; Proteasome.
e)	Acetylation ; Activation ; Proteasome.
PRACT	TICE: Which of the following is true regarding protein ubiquitination?
a)	Ubiquitin tagged proteins are usually degraded in the cell.
b)	Ubiquitin is a ubiquitous, small nucleotide.
c)	Covalent attachment of ubiquitin usually occurs via the R groups of methionine amino acid residues.
d)	Ubiquitin links to the target protein only via hydrogen bonds.
e)	Only a and c are true.
f)	All of the above are true.
g)	None of the above are true.
PRACT	TICE: Ligation of a ubiquitin peptide's charged carboxylate group to the R-group of a target
protein'	s residue forms a(n) bond.
a)	Neutrally ; Histidine ; Hydrogen.
b)	Negatively ; Leucine ; Isopeptide.
c)	Positively ; Lysine ; Ionic.
d)	Positively ; Lysine ; Disulfide.
e)	Negatively; Lysine ; Hydrogen.

f) Negatively ; Lysine ; Isopeptide.