CONCEPT: SALTING OUT

Salts affects protein
□ At very low [salt], most proteins form solids/precipitates. Insoluble protein precipitate
1) Salting: addition of salt to <i>transition</i> proteins a dissolved/soluble state.
□ Salt competes & strength of interactions between proteins to increase solubility.
2) Salting: addition of of salt to transition proteins of a dissolved/soluble state.
□ Too much salt competes with interactions, leaving little H₂O to hydrate & dissolve proteins, so they clump
Very Little to No Salt Strong Onic Bond Asp Lys Onic Bond Weakened by salts Too Much Salt
Protein Protein Protein

PRACTICE: Which statement best explains the basis of salting out?

- a) Presence of some salt ions weakens ionic interactions between proteins, leading to greater protein solubility.
- b) Too few salt ions can deprive proteins of H₂O solvent, leading to protein precipitation.
- c) Addition of salt ions strengthens ionic interactions between proteins, leading to greater protein solubility.
- d) Too many salt ions can deprive proteins of H₂O solvent, leading to protein precipitation.

3) Salting Out

●After differential centrifugation, out removes u	inwanted proteins based on
□ The [salt] at which a protein precipitates/salts-ou	t from protein to protein.
$\hfill\Box$ Salt, usually ammonium sulfate (NH ₄) ₂ SO ₄ , is slo	owly to the protein solution.
□ Protein precipitates have increased S value & ca	n be via centrifugation.
●Salting out does perfectly purify a target-protein b	out can remove a significant amount of <i>unwanted</i> proteins.

CONCEPT:	SALTING	OUT
-----------------	----------------	-----

PRACTICE: Salting out consists of adding	in order to
--	-------------

- a) Ammonium sulfate; alter the net charge of proteins.
- c) Salt; neutralize acid/base reactions of proteins.
- b) Ammonium sulfate; alter the solubility of proteins.
- d) Salt; perfectly purify a protein of interest.