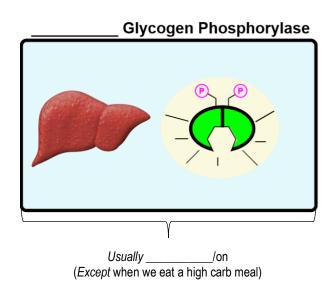
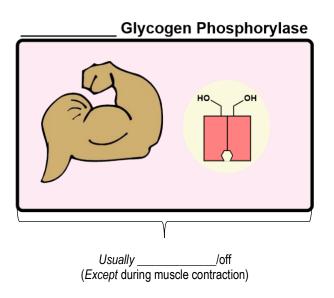

CONCEPT: GLYCOGEN PHOSPHORYLASE


Glycogen phospho	rylase: catalyzes glycogen breakdown with _	&	regulation	1.
□ Has	subunits, each of which has a re	sidue (Ser-14) that can b	e phosphorylated.	
□ Uses	(polymer) as a substrate &	catalyzes removal of a si	ngle(monomer)
Primarily expresse	d in <i>liver</i> cells & muscle tissue where glycoge	en	is critical.	


□ Subsequent reactions allow the released glucose to be used in *cellular respiration* to generate energy (ex. ATP).

Two Isozymes of Glycogen Phosphorylase

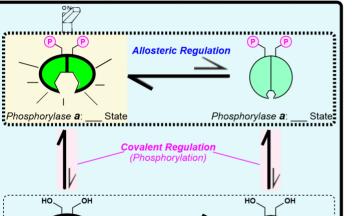
Two different ______ of glycogen phosphorylase: 1) _____ Phosphorylase & 2) _____ Phosphorylase.
 Isozymes: catalytically/structurally _____ enzymes that are genetically & allosterically differently.
 Liver/muscle phosphorylase isozymes are regulated differently due to different biological roles of glycogen breakdown.
 Liver Phosphorylase Isozyme: usually _____ unless allosterically signaled to stop.
 Muscle Phosphorylase Isozyme: usually _____ unless allosterically signaled to make ATP for contraction.

CONCEPT: GLYCOGEN PHOSPHORYLASE

Phosphorylase a & Phosphorylase b

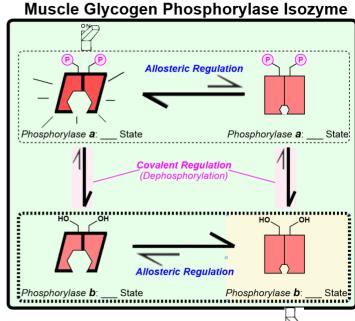
●Both liver/muscle isozymes have _____ different forms: 1) Phosphorylase _____ & 2) Phosphorylase ____.

□ Each form exists in equilibrium with their own ____ state & ____ state.


□ Addition/removal of _____ groups (covalent regulation) on 2 Ser residues coverts the two forms.

1) Phosphorylase ____: phosphorylated serines & is catalytically _____ active (➡ favors R-state).

2) Phosphorylase ____: unphosphorylated & is catalytically _____ active (➡ favors T-state).



Allosteric Regulation

Phosphorylase **b**:

PRACTICE: Glycogen phosphorylase is an enzyme involved in glycogen metabolism that's regulated by phosphorylation. Phosphorylation on serine residues results in more enzyme activity, while the dephosphorylated enzyme has little to no activity. What result would you expect on activity if the serine residues that served as phosphorylation sites on glycogen phosphorylase were mutated to aspartate residues?

a) No effect on activity, since aspartate residues can be phosphorylated similarly to serine residues.

___ State

Phosphorylase b:

- b) The enzyme would be completely inactive if it has an Asp residue, since it will no longer recognize its substrate.
- c) The enzyme likely has some activity, since Asp is negatively charged like a phosphoryl group, but activity would not be regulated by phosphorylation.
- d) The enzyme would be mostly inactive, since the enzyme can no longer be phosphorylated.