- ●Recall: Insulin affects *glucose metabolism* by: 1) ↑ _____ *expression* & 2) ↑ _____ *synthesis*. - □ Recall: both help to _____ [glucose] in the blood. - □ Insulin signals \downarrow blood [glucose] via the following pathway: PI3K \rightarrow PIP₃ \rightarrow PDK1 \rightarrow PKB. ## **Insulin Signaling Decreases Blood [Glucose]** - •_____ steps in insulin's RTK signaling cascade to decrease blood glucose levels: - 1 After a high-glucose meal, insulin is released & binds its receptor, which phosphorylates & activates _____. - 2 Active IRS-1 binds SH2 domain of Phosphoinositide 3 Kinase (_____) to activate it. - **3** Phosphatidylinositol 4,5-bisphosphate (PIP___) → Pl3K → Phosphatidylinositol 3,4,5-trisphosphate (PIP___). - 4 PIP₃ binds Protein Kinase B (_____ or Akt). - 5 PIP₃-Dependent Kinase 1 (_____) phosphorylates & activates PKB. - 6 Active PKB phosphorylates targets controlling _____ expression & ____ synthesis. - □ Both events help ______ blood [glucose]. **EXAMPLE**: If you delete the PKB gene from insulin-responsive cells, what would you likely observe in insulin's presence? - a) PI3K is not activated. - b) PDK1 is not activated. - c) GLUT4 is not expressed & is retained in intracellular vesicles. - d) Phosphatidylinositol is cleaved by phospholipase C. # Inculin Signaling Activator Changen Synthesis | insulin Signaling Activates Glycogen Sy | <u>/ntnesis</u> | | | | | |---|-----------------|--|--------------------|---|--| | • Glycogen Synthase (GS): enzyme that sy | ynthesizes | (| (converting glucos | e into glycogen). | | | □ Usually <i>Glycogen Synthase Kin</i> | ase 3 (|) phosphory | /lates & | GS. | | | □ HOWEVER, active PKB phosph | orylates & | | _ GSK3 (which al | lows activation of GS). | | | EXAMPLE: Insulin Activates Glycogen Syl | nthesis. | | | | | | 7 PKB phosphorylates & inhibits 8 Inactive GSK3 can no longer inhibit GS. 9 Active GS synthesizes | (Acti | PIP ₃ Lateral Diffusion 7 (Active) 8 (Inactive) | (Inactive) | GLUT4 Transport Decreasing Blood [Glucose] Insulin signaling glycogen synthesis. | | | PRACTICE: Place the following insulin sig | naling transdu | uction events in or | rder of occurrence | e (event 9 is provided). | | | | | | | | | | a) Full activation of PKB/Akt | | |---|--| |---|--| - b) Activated PI3K converts PIP₂ to PIP₃ _____. - c) GLUT4 expressed in the cell membrane ___9__. - d) Ligand/insulin binding to the insulin receptor _____. - e) GSK3 is phosphorylated & inactivated _____. - Activated PDK1 phosphorylates & activates of PKB/Akt _____. f) - IRS-1 is phosphorylated & activated by the insulin receptor _____. - h) Autophosphorylation of the insulin receptor _____. - PI3K is activated upon its SH2 domain binding phosphorylated IRS-1 _____. i) - Glycogen synthase converts glucose to glycogen _____. j) - PIP₃ molecules laterally diffuse to bind PKB/Akt & PDK1 _____. ## **How to Remember Insulin RTK Signaling on Glucose Metabolism?** - 1 IRS gives a tax refund (IRS-1). - 2 Cell buys a PIe & puts a fake \$3K label on it (PI3K) to prank PIP (activation of PI3K). - 3 PIP first offers \$2k for a bite, but then agrees to pay \$3k (PIP2 conversion to PIP3). - 4 Bank tellers are shocked when they hear PIP Paid thousands (\$K) for a Bite (PKB). - 5 PIP Deposits 1K (PDK1) at the bank but bank tellers (PKB) handle the transaction (PDK1 activates PKB). - 6 Bank tellers increase PIP's savinGS (Glycogen Synthesis) & express order GLUTen Free (GLUT4) donut. | | 3 | |----|--| | a) | Activation of PI3K | | b) | Activation of the insulin receptor | | c) | Activation of PDK1 | | d) | GLUT4 transporter expressed in the membrane | | e) | Conversion of PIP ₂ to PIP ₃ | | f) | Binding of insulin to the receptor | | g) | Full activation of PKB | | h) | Phosphorylation of IRS-1 | | | | **EXAMPLE:** Place the following insulin signal transduction events in order of occurrence (1-8). PRACTICE: All of the following are true of the reaction catalyzed by PI3K EXCEPT: - a) Phosphatidylinositol bisphosphate is a substrate of PI3K. - b) Inositol triphosphate is a substrate of PI3K. - c) ATP is a substrate of PI3K. - d) Phosphatidylinositol triphosphate is a product of PI3K. - e) ADP is a product of PI3K. **PRACTICE:** Which of the following results would you predict to occur if a mutation changes a Tyr residue of the Insulin Receptor to Ala? - a) Inability to take up glucose from the bloodstream. - b) Constant uptake of glucose from the bloodstream. - c) Upregulated glycogen synthesis and GLUT4 transport to the membrane. - d) B and C. **PRACTICE:** IRS-1 is an essential adaptor protein in the insulin signaling pathway. If IRS-1 was under expressed in muscle cells, what effect would you expect to see on glycogen synthesis? - a) Protein kinase B would remain inactive, resulting in increased glycogen synthesis. - b) Protein kinase B would be overstimulated, resulting in increased glycogen synthesis. - c) Protein kinase B would remain inactive, resulting in decreased glycogen synthesis. - d) Protein kinase B would be overstimulated, resulting in decreased glycogen synthesis.