- ●Recall: Insulin affects *glucose metabolism* by: 1) ↑ _____ *expression* & 2) ↑ _____ *synthesis*.
 - □ Recall: both help to _____ [glucose] in the blood.
 - □ Insulin signals \downarrow blood [glucose] via the following pathway: PI3K \rightarrow PIP₃ \rightarrow PDK1 \rightarrow PKB.

Insulin Signaling Decreases Blood [Glucose]

- •_____ steps in insulin's RTK signaling cascade to decrease blood glucose levels:
 - 1 After a high-glucose meal, insulin is released & binds its receptor, which phosphorylates & activates _____.
 - 2 Active IRS-1 binds SH2 domain of Phosphoinositide 3 Kinase (_____) to activate it.
 - **3** Phosphatidylinositol 4,5-bisphosphate (PIP___) → Pl3K → Phosphatidylinositol 3,4,5-trisphosphate (PIP___).
 - 4 PIP₃ binds Protein Kinase B (_____ or Akt).
 - 5 PIP₃-Dependent Kinase 1 (_____) phosphorylates & activates PKB.
 - 6 Active PKB phosphorylates targets controlling _____ expression & ____ synthesis.
 - □ Both events help ______ blood [glucose].

EXAMPLE: If you delete the PKB gene from insulin-responsive cells, what would you likely observe in insulin's presence?

- a) PI3K is not activated.
- b) PDK1 is not activated.
- c) GLUT4 is not expressed & is retained in intracellular vesicles.
- d) Phosphatidylinositol is cleaved by phospholipase C.

Inculin Signaling Activator Changen Synthesis

insulin Signaling Activates Glycogen Sy	<u>/ntnesis</u>				
• Glycogen Synthase (GS): enzyme that sy	ynthesizes	((converting glucos	e into glycogen).	
□ Usually <i>Glycogen Synthase Kin</i>	ase 3 () phosphory	/lates &	GS.	
□ HOWEVER, active PKB phosph	orylates &		_ GSK3 (which al	lows activation of GS).	
EXAMPLE: Insulin Activates Glycogen Syl	nthesis.				
7 PKB phosphorylates & inhibits 8 Inactive GSK3 can no longer inhibit GS. 9 Active GS synthesizes	(Acti	PIP ₃ Lateral Diffusion 7 (Active) 8 (Inactive)	(Inactive)	GLUT4 Transport Decreasing Blood [Glucose] Insulin signaling glycogen synthesis.	
PRACTICE: Place the following insulin sig	naling transdu	uction events in or	rder of occurrence	e (event 9 is provided).	

a) Full activation of PKB/Akt	
---	--

- b) Activated PI3K converts PIP₂ to PIP₃ _____.
- c) GLUT4 expressed in the cell membrane ___9__.
- d) Ligand/insulin binding to the insulin receptor _____.
- e) GSK3 is phosphorylated & inactivated _____.
- Activated PDK1 phosphorylates & activates of PKB/Akt _____. f)
- IRS-1 is phosphorylated & activated by the insulin receptor _____.
- h) Autophosphorylation of the insulin receptor _____.
- PI3K is activated upon its SH2 domain binding phosphorylated IRS-1 _____. i)
- Glycogen synthase converts glucose to glycogen _____. j)
- PIP₃ molecules laterally diffuse to bind PKB/Akt & PDK1 _____.

How to Remember Insulin RTK Signaling on Glucose Metabolism?

- 1 IRS gives a tax refund (IRS-1).
- 2 Cell buys a PIe & puts a fake \$3K label on it (PI3K) to prank PIP (activation of PI3K).
- 3 PIP first offers \$2k for a bite, but then agrees to pay \$3k (PIP2 conversion to PIP3).
- 4 Bank tellers are shocked when they hear PIP Paid thousands (\$K) for a Bite (PKB).
- 5 PIP Deposits 1K (PDK1) at the bank but bank tellers (PKB) handle the transaction (PDK1 activates PKB).
- 6 Bank tellers increase PIP's savinGS (Glycogen Synthesis) & express order GLUTen Free (GLUT4) donut.

	3
a)	Activation of PI3K
b)	Activation of the insulin receptor
c)	Activation of PDK1
d)	GLUT4 transporter expressed in the membrane
e)	Conversion of PIP ₂ to PIP ₃
f)	Binding of insulin to the receptor
g)	Full activation of PKB
h)	Phosphorylation of IRS-1

EXAMPLE: Place the following insulin signal transduction events in order of occurrence (1-8).

PRACTICE: All of the following are true of the reaction catalyzed by PI3K EXCEPT:

- a) Phosphatidylinositol bisphosphate is a substrate of PI3K.
- b) Inositol triphosphate is a substrate of PI3K.
- c) ATP is a substrate of PI3K.
- d) Phosphatidylinositol triphosphate is a product of PI3K.
- e) ADP is a product of PI3K.

PRACTICE: Which of the following results would you predict to occur if a mutation changes a Tyr residue of the Insulin Receptor to Ala?

- a) Inability to take up glucose from the bloodstream.
- b) Constant uptake of glucose from the bloodstream.
- c) Upregulated glycogen synthesis and GLUT4 transport to the membrane.
- d) B and C.

PRACTICE: IRS-1 is an essential adaptor protein in the insulin signaling pathway. If IRS-1 was under expressed in muscle cells, what effect would you expect to see on glycogen synthesis?

- a) Protein kinase B would remain inactive, resulting in increased glycogen synthesis.
- b) Protein kinase B would be overstimulated, resulting in increased glycogen synthesis.
- c) Protein kinase B would remain inactive, resulting in decreased glycogen synthesis.
- d) Protein kinase B would be overstimulated, resulting in decreased glycogen synthesis.