CONCEPT: ENZYME KINETICS - Enzyme Kinetics: the branch of biochemistry related to the _____ or velocity of _____-catalyzed reactions. - ☐ Measured by the reaction rate/velocity (____). ### **How to Increase Reaction Rates** - ●In general, there are _____ ways to increase the rate of a reaction (v): - (1) Increase the _____. - □ Issue: nonspecifically increases all reaction rates & could eventually _____ proteins. - 2) Increase [_____]. - □ Issue: lots of time/energy to make enough substrate to increase v; could create overcrowding. - 3) Add a _____. - □ Solution: living systems use small amounts of ______ to increase reaction rates. **EXAMPLE:** Increasing Reaction Rates. PRACTICE: Assuming the [S] is always saturating the enzymes (E), which of the plots below is correct? **PRACTICE:** Which of the following is not a method of increasing a reaction's rate? - a) Increase the [substrate]. - c) Increase the [product]. - b) Increase the [enzyme]. - d) Slightly increase the temperature. ### **CONCEPT:** ENZYME KINETICS # **Enzyme Kinetics Variables** •There are _____ variables to consider in enzyme kinetics: **EXAMPLE:** Enzyme Kinetics Variables. | □ [E]: concentration of free molecules. | □ [S]: concentration of free molecules. | |---|---| | □ [ES]: concentration of the enzyme-substrate | □ [P]: concentration of free molecules. | | \Box [E] $_{T}$: the concentration of enzyme ([E] + [ES]). | □ <i>k</i> : constants. | | □ V ₀ : reaction velocity. | □ K _m : constant. | | □ V _{max} : reaction velocity. | □ k _{cat} : constant. | **PRACTICE:** Which of the following options represents the total concentration of enzyme? - a) [E][ES]. - b) [ES][E]. - c) [E] + [ES]. d) [ES]/[E]. - e) [E]/[ES]. # [Substrate] >>> [Enzyme] - •Recall: We already know that $[E]_T = [\underline{\hspace{1cm}}] + [\underline{\hspace{1cm}}]$; HOWEVER, Do we also need to consider that $[S]_T = [S] + [ES]$??? - \Box Though we know enzyme kinetics is affected by $[E]_T$ & $[S]_T$, the answer is _____! But why? - •Under typical laboratory conditions, the total [substrate] is in *great excess* over the total [enzyme]: [___]_T >>> [___]_T. - □ Amount of substrate bound to enzyme to form **ES** at any given time is _____ compared to total [S]_T. - □ We don't consider that $[S]_T = [S] + [ES]$; since [ES] is super _____ compared to $[S]_T$, then $[S]_T \approx [S]$. •Conclusion: moving forward in our course, [___] will represent the total amount of substrate.