CONCEPT: ENZYME KINETICS

- Enzyme Kinetics: the branch of biochemistry related to the _____ or velocity of _____-catalyzed reactions.
 - ☐ Measured by the reaction rate/velocity (____).

How to Increase Reaction Rates

- ●In general, there are _____ ways to increase the rate of a reaction (v):
 - (1) Increase the _____.
 - □ Issue: nonspecifically increases all reaction rates & could eventually _____ proteins.
 - 2) Increase [_____].
 - □ Issue: lots of time/energy to make enough substrate to increase v; could create overcrowding.
 - 3) Add a _____.
 - □ Solution: living systems use small amounts of ______ to increase reaction rates.

EXAMPLE: Increasing Reaction Rates.

PRACTICE: Assuming the [S] is always saturating the enzymes (E), which of the plots below is correct?

PRACTICE: Which of the following is not a method of increasing a reaction's rate?

- a) Increase the [substrate].
- c) Increase the [product].
- b) Increase the [enzyme].
- d) Slightly increase the temperature.

CONCEPT: ENZYME KINETICS

Enzyme Kinetics Variables

•There are _____ variables to consider in enzyme kinetics:

EXAMPLE: Enzyme Kinetics Variables.

□ [E]: concentration of free molecules.	□ [S]: concentration of free molecules.
□ [ES]: concentration of the enzyme-substrate	□ [P]: concentration of free molecules.
\Box [E] $_{T}$: the concentration of enzyme ([E] + [ES]).	□ <i>k</i> : constants.
□ V ₀ : reaction velocity.	□ K _m : constant.
□ V _{max} : reaction velocity.	□ k _{cat} : constant.

PRACTICE: Which of the following options represents the total concentration of enzyme?

- a) [E][ES].
- b) [ES][E].
- c) [E] + [ES]. d) [ES]/[E].
- e) [E]/[ES].

[Substrate] >>> [Enzyme]

- •Recall: We already know that $[E]_T = [\underline{\hspace{1cm}}] + [\underline{\hspace{1cm}}]$; HOWEVER, Do we also need to consider that $[S]_T = [S] + [ES]$???
 - \Box Though we know enzyme kinetics is affected by $[E]_T$ & $[S]_T$, the answer is _____! But why?
- •Under typical laboratory conditions, the total [substrate] is in *great excess* over the total [enzyme]: [___]_T >>> [___]_T.
 - □ Amount of substrate bound to enzyme to form **ES** at any given time is _____ compared to total [S]_T.
 - □ We don't consider that $[S]_T = [S] + [ES]$; since [ES] is super _____ compared to $[S]_T$, then $[S]_T \approx [S]$.

•Conclusion: moving forward in our course, [___] will represent the total amount of substrate.