PRACTICE: OXIDATIVE PHOSPHORYLATION

- 16. Which of the following statements is true?
 - a. electron transfer in the inner mitochondrial membrane results in the release of protons on the outside
 - b. energy is gained by proton difference in the outer membrane
 - c. oxidative phosphorylation does not require a membrane
 - d. uncoupling agents fail to allow electron transport
 - e. energy is conserved by the outer membrane pH gradient
- 17. The proton motive force:
 - a. creates a pore in the inner mitochondrial membrane
 - b. generates ADP and Pi for ATPase
 - c. oxidizes NADH to NAD+
 - d. causes a conformational change in the ATPase
 - e. reduces O2 to H2O
- 18. Which of the following about human mitochondria is true?
 - a. About 900 mitochondrial proteins are encoded in the nucleus, not the mitochondria.
 - b. Mitochondrial genes are inherited from both maternal and paternal sources.
 - c. rRNA and tRNA are imported form the cytoplasm for mitochondrial protein synthesis.
 - d. The mitochondrial genome encodes all mitochondrial proteins.
 - e. The mitochondrial genome is not subject to mutation.
- 19. The addition of 2,4-dinitrophenol (DNP) or FCCP to mitochondria carrying out oxidative phosphorylation inhibits ATP production. By what mechanism does this occur?
 - a. They block electron transport
 - b. They block the proton pump in complex I and III
 - c. They dissipate the proton gradient by transporting protons across the membrane
 - d. They block adenosine nucleotide translocase
 - e. They block phosphate translocase
- 20. What will happen to the P/O ratio of the mitochondria after the addition of 2,4-dinitrophenol (DNP) or FCCP?
 - a. The ratio will decrease
 - b. The ratio will increase
 - c. The ratio will be unchanged
 - d. The ratio will decrease only if large quantities are added
 - e. More information is needed to determine the answer