CONCEPT: INHIBITION EFFECTS ON REACTION RATE

If _____ & α' quantify the effect an inhibitor has on the V₀, then, in the inhibitor's presence, α & α' must be included in....
1) Michaelis-Menten Equation.
2) Lineweaver-Burk Equation.

Degree of Inhibition in Michaelis-Menten & Lineweaver-Burk

- •K₁ &/or K'₁ are included into Michaelis-_____ & Lineweaver-____ equations to measure inhibitor effects on V₀.
 - □ In these equations, inhibition constants are expressed via degree of inhibition factors (____ and/or ____).

 □ Depending on the *type* of inhibitor, α and/or α' can impact K_m and/or V_{max} in _____ ways.
- •So, in the presence of an inhibitor, just ______ K_m and V_{max} respectively with the appropriate K ^{app}_{max} and V ^{app}_{max}.

EXAMPLE: Substituting K app and V app into the Michaelis-Menten & Lineweaver-Burk equations.

Depending on the _____ of inhibitor:

Michaelis-Menten Equation:

Lineweaver-Burk Equation:

$$V_0 = \frac{V_{\text{max}}[S]}{\alpha K_{\text{m}} + [S]}$$

$$\frac{1}{V_0} = \frac{\alpha K_m}{V_{max}} \left(\frac{1}{[S]} \right) + \frac{1}{V_{max}}$$

$$V_0 = \frac{\left(\frac{V_{\text{max}}}{\alpha^*}\right)[S]}{\left(\frac{K_{\text{m}}}{\alpha^*}\right) + [S]}$$

$$\frac{1}{V_0} = \frac{K_m}{V_{max}} \left(\frac{1}{[S]}\right) + \frac{\alpha'}{V_{max}}$$

Inhibitors
$$V_0 = \frac{\left(\frac{V_{max}}{\alpha'}\right)[S]}{\left(\frac{\alpha K_m}{\alpha'}\right) + [S]}$$

$$\frac{1}{V_0} = \frac{\alpha K_m}{V_{max}} \left(\frac{1}{[S]}\right) + \frac{\alpha'}{V_{max}}$$

PRACTICE: Select the option below that best fills in the blanks in order of their appearance in the following sentence: In terms of the effects that the common types of reversible inhibitors can have on an enzyme's kinetic variables such as K_m and V_{max}, notice that regardless of the type of inhibitor used, the _____ is always either unaltered or _____, whereas the _____ can either be increased, decreased or remain unchanged depending on the type of inhibitor.

- a) K_m ; increased ; $V_{\text{max}}.$
- b) K_m ; decreased; V_{max} .
- c) V_{max} ; increased; K_m .
- d) V_{max} ; decreased; K_m .