## **CONCEPT: OPTIMAL ENZYME CONDITIONS**

Proper enzyme catalysis requires specific conditions, including \_\_\_\_\_ & \_\_\_\_\_.

## Optimal pH

- Most enzymes have an \_\_\_\_\_ pH where they display their greatest amount of activity.
  - □ Enzymes are \_\_\_\_\_\_ to pH & different enzymes have their own optimal pH.
- Recall: Charges of ionizable amino acids can \_\_\_\_\_ with pH.
  - □ pH changes could cause active site amino acids to change their \_\_\_\_\_ & hinder catalysis.
  - □ Changing the pH significantly enough could cause an enzyme to \_\_\_\_\_.

**EXAMPLE:** What is the approximate optimal pH for pepsin & chymotrypsin?





Chymotrypsin Optimal pH ≈ \_\_\_\_\_

**PRACTICE:** Which of the following is true of enzyme catalysts?

- a) Their catalytic activity is independent of pH.
- b) They are generally equally active on D and L isomers of a given substrate.
- c) They can increase the equilibrium constant for a given reaction by a thousand-fold or more.
- d) They can increase the reaction rate for a given reaction by a thousand-fold or more.

## **Optimal Temperature**

●Most enzymes also have an optimal \_\_\_\_\_ where they display their greatest amount of activity.



**PRACTICE:** The best way to increase the reaction rate for an enzyme saturated with substrate is always to:

- a) Increase the pH.
- b) Increase the temperature.
- c) Increase [enzyme].
- d) Increase [substrate].

## **CONCEPT: OPTIMAL ENZYME CONDITIONS**

**PRACTICE:** Which of the following statements about enzymes is false?

- a) Enzymes carry out multiple rounds of a given chemical reaction.
- b) Enzymes accelerate the speed at which reactions get to equilibrium by lowering the activation energy barrier.
- c) Enzymes can denature under highly acidic or basic conditions.
- d) Enzymes push the reaction equilibrium toward product formation.
- e) Enzymes are biological molecular catalysts.