

CONCEPT: OXIDATIVE PHOSPHORYLATION

- Complex I (NADH dehydrogenase) pumps 4H+ into intermembrane space, prosthetic groups: FMN and Fe-S
 - □ NADH delivers 2e⁻ to complex I: NADH \rightarrow FMN \rightarrow Fe-S proteins \rightarrow Q + 2H⁺ + 2e⁻ \rightarrow QH₂
- Complex II (succinate dehydrogenase) does not pump any protons, prosthetic groups: FAD and Fe-S
 - □ 3 FAD entry points to ubiquinone: complex II, FAD from β-oxidation, and NADH from cytoplasm*
 - □ FADH₂ delivers 2e⁻ to complex II: FADH₂ \rightarrow Fe-S proteins \rightarrow Q + 2H⁺ + 2e⁻ \rightarrow QH₂

- Complex III (cytochrome b) pumps 4 protons into intermembrane space, prosthetic groups: heme and Fe-S
 - □ Q cycle electron transfer results in the reduction of 2 cyt c, the pumping of 4H+, and uptake of 2H+ from matrix
 - □ Cyt c on periplasmic side of complex III, carries electrons 1 at a time without H+, prosthetic group: heme
- Complex IV (cytochrome oxidase) pumps 4H⁺ into intermembrane space, prosthetic group: heme and copper
 - \Box Cyt c donates electrons to Cu in complex IV, 4cyt c + 4e⁻ \rightarrow 2 Cu
 - □ Cyt c brings electrons to complex IV were they will form H_2O : cyt c \rightarrow Cu \rightarrow Heme a \rightarrow O_2 + $4H^+$ + $4e^-$

