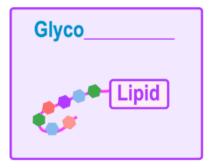
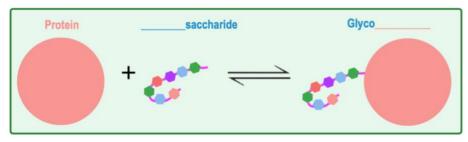
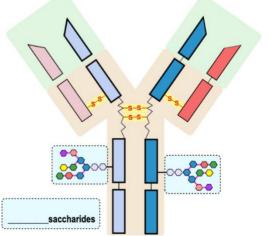

CONCEPT: GLYCOCONJUGATES

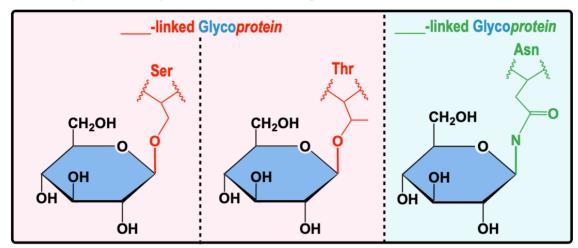

- •_____: oligosaccharides conjugated to another chemical species (ex. lipids or proteins).
 - □ Oligosaccharide portions of glycoconjugates are usually very ______.
 - □ Can show _____ with a non-reducing-end & a reducing-end.


Glycolipids


•______: a hybrid molecule made of a ______ covalently linked to relatively small sugars.

Glycoproteins

- Glycoproteins: a hybrid molecule made of mostly _____ covalently linked to relatively small ______
 - □ Found *inside* cells, in the *extra*cellular matrix, & on the outer surface of plasma membranes.
 - □ _____ are glycoproteins.



CONCEPT: GLYCOCONJUGATES

O-Linked vs. N-Linked Glycoproteins

- Glycoproteins form glycosidic bonds between a sugar's _____ carbon & an amino acid residue's ____-group.
 - 1) _____-linked glycosidic linkage: forms with -OH of _____ or ____ residues.
 - 2) _____-linked glycosidic linkage: forms with amide nitrogen of an _____ residue.

PRACTICE: In glycoproteins, the carbohydrate moiety is always attached through the amino acid residues:

- a) Asparagine, Serine, or Threonine.
- d) Glycine, Alanine, or Aspartate.

b) Aspartate or Glutamate.

e) Tryptophan, Aspartate, or Cysteine.

c) Glutamine or Arginine.

PRACTICE: The O-linked glycoproteins of eukaryotes usually have their sugar chains attached to:

- a) Buried carbonyls in the protein backbone.
- d) The carboxyl terminal residue.
- b) Surface carbonyls in the protein backbone.
- e) The carboxyl groups of Asp or Glu.

c) The OH of Ser or Thr residues.