CONCEPT: K_M ENZYME - Michaelis Constant (_____): exact [substrate] at which V₀ = _____ V_{max}. - \Box When [S] = K_m , _____ (½) of all available enzyme active sites are full/occupied with substrate. •K_m is an *intrinsic* property of an enzyme but can _____ under different conditions (pH, temperature, solvent, etc). **PRACTICE:** What is the initial velocity of a reaction when the concentration of substrate is set equal to the K_m? a) V_0 is equal to V_{max} . - c) The [S] is so low that V_0 is negligible. - e) V_0 = one-half V_{max} . - b) V_0 is equal to one-half [S]. - d) Not enough information to determine V_0 . # K_m Can Be Expressed with Rate Constants - •Recall: reaction rates (v) can be expressed by *rate laws*, which use rate _____ (k) & there are ____ k initially. - \Box K_m is defined under *steady-state* conditions as a compilation of these 3 rate constants: K_m = $\frac{\kappa_{-1} + \kappa_2}{\kappa_1}$ **PRACTICE:** Select the best description of the K_m . - a) Equal to the product concentration at initial reaction conditions. - b) Equal to the substrate concentration when the reaction rate is half its maximal value. - c) Equal to the ratio of the sum of the ES dissociation rate constants over the ES association rate constant. - d) More than one of the above are true. ## **CONCEPT:** K_M ENZYME ## Km Measures an Enzyme's Affinity for its Substrate - ◆K_m also defined as ratio of [E][S] over the [ES], which measures an enzyme's binding ______ for its substrate. - \Box The _____ the K_m , the ____ the binding affinity an enzyme has for that substrate. - □ K_m only indicates affinity but does not necessarily indicate the "preference" an enzyme has for its substrate. **EXAMPLE:** Which enzyme has the stronger affinity for its substrate? $$K_{m} = \frac{\text{ES dissociation}}{\text{ES association}} = \frac{k_{-1} + k_{2}}{k_{1}} = \frac{\begin{bmatrix} 1 \\ 1 \end{bmatrix}}{\begin{bmatrix} 1 \end{bmatrix}}$$ $$\uparrow \kappa_{m} = \frac{Dissociation}{Association} = \underbrace{ affinity}$$ $$\downarrow \kappa_{m} = \underbrace{ Dissociation}_{Association} = \underbrace{ affinity}$$ PRACTICE: According to the chart below, which one of the following enzymes has the strongest affinity for its substrate? - a) Lysozyme. - b) Penicillinase. - c) β-Galactosidase. - d) Chymotrypsin. - e) Carbonic anhydrase. | Enzyme | Substrate | K _m (μ M) | |--------------------|-----------------------------------|-------------------------------------| | Lysozyme | Hexa-N-actylhlucosamine | 6 | | Penicillinase | Benzylpenicillin | 50 | | β-Galactosidase | Lactose | 4000 | | Chymotrypsin | Acetyl-L-tryptophanamide | 5000 | | Carbonic anhydrase | Carbon dioxide (CO ₂) | 8000 | ## [E]_T Does Not Affect the K_m - •The Michaelis constant (K_m) is an *intrinsic* ______ of an enzyme that is *independent* of the [enzyme]. - ●When [S] = K_m, ______ (½) of all available enzyme active sites are _____, regardless of [E]_T. - \square Recall: [E]_T _____ both V₀ and V_{max}; HOWEVER, altering the [E]_T does not affect the _____. ### **CONCEPT:** K_M ENZYME **PRACTICE:** Indicate which region of the Enzyme Kinetics plot below best corresponds to each statement. - A) Initial reaction velocity is limited mainly by the [S] present: _____ - B) Initial reaction velocity limited mainly by the [E] present: _____ - C) The active site of an enzyme is most likely free/unoccupied: _____ - D) The active site of an enzyme is most likely occupied by substrate: ___ - E) This region includes the points corresponding to K_m & ½V_{max}: ______ **PRACTICE:** Use the data in the following chart to determine the K_m of the enzyme. - a) 1 mM. - b) 1,000 mM. - c) 2 mM. - d) 4 mM. | [Substrate] | Initial Reaction Rate, Vo | |-------------|---------------------------| | (mM) | (µmol/min) | | 0.7 | 216 | | 2.1 | 324 | | 4 | 435 | | 6.1 | 489 | | 1000 | 648 |