CONCEPT: K_M ENZYME

- Michaelis Constant (_____): exact [substrate] at which V₀ = _____ V_{max}.
 - \Box When [S] = K_m , _____ (½) of all available enzyme active sites are full/occupied with substrate.

•K_m is an *intrinsic* property of an enzyme but can _____ under different conditions (pH, temperature, solvent, etc).

PRACTICE: What is the initial velocity of a reaction when the concentration of substrate is set equal to the K_m?

a) V_0 is equal to V_{max} .

- c) The [S] is so low that V_0 is negligible.
- e) V_0 = one-half V_{max} .

- b) V_0 is equal to one-half [S].
- d) Not enough information to determine V_0 .

K_m Can Be Expressed with Rate Constants

- •Recall: reaction rates (v) can be expressed by *rate laws*, which use rate _____ (k) & there are ____ k initially.
 - \Box K_m is defined under *steady-state* conditions as a compilation of these 3 rate constants: K_m = $\frac{\kappa_{-1} + \kappa_2}{\kappa_1}$

PRACTICE: Select the best description of the K_m .

- a) Equal to the product concentration at initial reaction conditions.
- b) Equal to the substrate concentration when the reaction rate is half its maximal value.
- c) Equal to the ratio of the sum of the ES dissociation rate constants over the ES association rate constant.
- d) More than one of the above are true.

CONCEPT: K_M ENZYME

Km Measures an Enzyme's Affinity for its Substrate

- ◆K_m also defined as ratio of [E][S] over the [ES], which measures an enzyme's binding ______ for its substrate.
 - \Box The _____ the K_m , the ____ the binding affinity an enzyme has for that substrate.
 - □ K_m only indicates affinity but does not necessarily indicate the "preference" an enzyme has for its substrate.

EXAMPLE: Which enzyme has the stronger affinity for its substrate?

$$K_{m} = \frac{\text{ES dissociation}}{\text{ES association}} = \frac{k_{-1} + k_{2}}{k_{1}} = \frac{\begin{bmatrix} 1 \\ 1 \end{bmatrix}}{\begin{bmatrix} 1 \end{bmatrix}}$$

$$\uparrow \kappa_{m} = \frac{Dissociation}{Association} = \underbrace{ affinity}$$

$$\downarrow \kappa_{m} = \underbrace{ Dissociation}_{Association} = \underbrace{ affinity}$$

PRACTICE: According to the chart below, which one of the following enzymes has the strongest affinity for its substrate?

- a) Lysozyme.
- b) Penicillinase.
- c) β-Galactosidase.
- d) Chymotrypsin.
- e) Carbonic anhydrase.

Enzyme	Substrate	K _m (μ M)
Lysozyme	Hexa-N-actylhlucosamine	6
Penicillinase	Benzylpenicillin	50
β-Galactosidase	Lactose	4000
Chymotrypsin	Acetyl-L-tryptophanamide	5000
Carbonic anhydrase	Carbon dioxide (CO ₂)	8000

[E]_T Does Not Affect the K_m

- •The Michaelis constant (K_m) is an *intrinsic* ______ of an enzyme that is *independent* of the [enzyme].
- ●When [S] = K_m, ______ (½) of all available enzyme active sites are _____, regardless of [E]_T.
 - \square Recall: [E]_T _____ both V₀ and V_{max}; HOWEVER, altering the [E]_T does not affect the _____.

CONCEPT: K_M ENZYME

PRACTICE: Indicate which region of the Enzyme Kinetics plot below best corresponds to each statement.

- A) Initial reaction velocity is limited mainly by the [S] present: _____
- B) Initial reaction velocity limited mainly by the [E] present: _____
- C) The active site of an enzyme is most likely free/unoccupied: _____
- D) The active site of an enzyme is most likely occupied by substrate: ___
- E) This region includes the points corresponding to K_m & ½V_{max}: ______

PRACTICE: Use the data in the following chart to determine the K_m of the enzyme.

- a) 1 mM.
- b) 1,000 mM.
- c) 2 mM.
- d) 4 mM.

[Substrate]	Initial Reaction Rate, Vo
(mM)	(µmol/min)
0.7	216
2.1	324
4	435
6.1	489
1000	648