CONCEPT: BIOLOGICAL MEMBRANES

- •Recall: In aqueous solution, amphipathic lipids *spontaneously* aggregate via the ______ *effect*.
 - □ Leads to formation of *micelles*, *liposomes* (or *vesicles*), & *lipid bilayers*.
 - □ _____- & ____- phospholipids have optimal shapes/geometry to form lipid bilayers.

Biological Membranes

- Biological membranes: lipid bilayers with other membrane-embedded molecules (ex. ______).
 - □ Fluid Mosaic Model: biological membranes are ______ & a _____ membrane-embedded proteins.
 - $\hfill\Box$ Comprised of 20-80% _____ by mass.
 - □ Membrane lipid composition _____ from cell-to-cell, from sheet-to-sheet, & between different organelles.

CONCEPT: BIOLOGICAL MEMBRANES

PRACTICE: Membranes are a fluid mosaic of what components?

- a) Proteins, cholesterol, and triacyglycerols.
- b) Phospholipids, proteins, and cholesterol.
- c) Phospholipids, nucleic acids, and cholesterol.
- d) Eicosanoids, proteins, and phospholipids.

PRACTICE: Which of the following lipids would likely not be involved in a lipid bilayer structure?

a) Phospholipid.

d) Sphingolipid.

b) Cholesterol.

e) Triacylglyceride.

c) Glycolipid.

f) Glycerophospholipid.

PRACTICE: Membrane components within a lipid bilayer are held together primarily by:

- a) Hydrogen bonds.
- b) Covalent bonds.
- c) Disulfide bonds.
- d) Hydrophobic interactions.
- e) Electrostatic interactions.
- f) All of the above.