CONCEPT: NEUROTRANSMITTER RELEASE

Neurotransmitters

SNARE Fusion Proteins

●Vesicles & plasma membranes naturally _____ each other.

Neurotransmitter exocytosis involves many proteins, including integral-membrane fusion proteins called ______.

1) _____-SNAREs: on an intracellular Vesicle's *cytoplasmic* surface (outside of Vesicle); also called ____-SNARE.

2) _____-SNAREs: on the Target membrane's *cytoplasmic* surface; also called _____-SNARE.

EXAMPLE: V/R-SNARE vs. T/Q-SNARE.

CONCEPT: NEUROTRANSMITTER RELEASE

PRACTICE: V-SNARE proteins deliver _____ to T-SNARE receptor sites.

- a) Ribosomes.
- b) mRNA.
- c) Transport vesicles.
- d) Lysozymes.

PRACTICE: True or False: All transport vesicles in the cell have T-SNARE proteins in their membrane.

a) True.

b) False.

Neurotransmitter Exocytosis

- •Neurotransmitter release via exocytosis occurs in a ______step process:
 - 1) SNARE Binding: V & T SNARE _____, inducing _____ changes, drawing membranes together.
 - 2) Hemifusion: changes in curvature & lateral tension induce ______ sheets of membranes to fuse.
 - 3) Fusion Pore: continued changes in curvature & lateral tension fuse both membrane sheets, creating a ______.
 - **4)** Release: Fusion pore expands to ______ neurotransmitter & fused membrane relaxes.

EXAMPLE: Neurotransmitter Release via Exocytosis.

EXAMPLE: The toxin produced by *Clostridium tetani* (which causes tetanus) is a protease that cleaves/destroys SNAREs. Explain why this would lead to muscle paralysis.

PRACTICE: The R-SNARE and Q-SNARE proteins are involved in what process?

- a) Formation of vesicles.
- b) Fusion of transport vesicles with the target membrane.
- c) Targeting of transport vesicle to intracellular destinations.
- d) Packaging of neurotransmitters into transport vesicles.
- e) Ligand-gated channel opening.