

CONCEPT: CITRIC ACID CYCLE

- 1. Citrate synthase ($\triangle G'^{\circ} = -32 \text{ kJ/mol}$) acetyl-CoA + oxaloacetate \rightarrow citrate
 - □ Water is consumed in the reaction, and CoA is released

- 2. Aconitase (ΔG° = 13 kJ/mol) citrate \rightarrow cis-aconitate (enzymatic intermediate) \rightarrow isocitrate
 - □ Removes water, then adds it back in
 - □ Citrate is prochiral, meaning it's not chiral, but acts chiral because aconitase binds citrate in one orientation
 - □ Fe-S complex held in active site by cysteine residues
 - □ It is an iron response regulatory molecule; changes shape due to lack of iron, and can then bind RNA
 - Ferritin is produced when iron is high in blood, transferrin is produced when iron is low in blood

- 3. Isocitrate dehydrogenase ($\Delta G^{"}$ = -21 kJ/mol) isocitrate \rightarrow α -ketoglutarate
 - ☐ Generates NADH and releases CO₂
 - □ Oxidative decarboxylase that uses NAD+ or NADP+ as the electron acceptor, and Mn²⁺ as a cofactor
 - Does not use TPP, lipoate, FAD, CoA like pyruvate dehydrogenase or α-ketoglutarate dehydrogenase

