CONCEPT: PROTEIN-LIGAND EQUILIBRIUM CONSTANTS ## Protein-Ligand Association Constant (Ka) - •Recall: equilibrium constant (_____) is the ratio of [Product] over [Reactant] at equilibrium. - Association constant (): equilibrium constant for the of the protein & ligand into a complex. - □ Don't confuse the protein-ligand-association constant (**K**_a) with the acid-dissociation constant (which is also "K_a"). - Ka and protein-affinity for ligand are ______ proportional. - □ Therefore, the _____ the **K**_a value, the *stronger* the affinity a protein has for that ligand. - \Box K_a has units of _____ and is the ____ of the dissociation constant ____ (K_a = 1/K_d). ## Protein-Ligand Dissociation Constant (Kd) - •Dissociation constant (_____): equilibrium constant for _____ of protein-ligand-complex back into P + L. - □ Recall: **K**_d and K_a are _____ of each other, so **K**_d has units of _____. - □ **K**_d is used _____ often than K_a to express the protein-affinity for a ligand. - ●The _____ &___ are very similar to each other (ex. **K**d & protein-affinity for ligand are _____ proportional). - $\hfill\Box$ Therefore, the ______ the Kd value, the *stronger* the affinity a protein has for that ligand. - \square Similar to how $K_m = [S]$ that allows $V_0 = \frac{1}{2}V_{max}$, $K_d = [\underline{\hspace{1cm}}]$ that allows $\underline{\hspace{1cm}}$ L-binding-sites to be occupied. | CONCEPT: | PROTEIN-L | IGAND | FOUII | IRRILIM | CONSTAN | TS | |-----------|---------------|-------|--------------|----------------|---------|----| | CUNCLE I. | LIXO I LIIN-L | JUNIO | | IDIXION | CONSTAN | 10 | **PRACTICE:** Protein A has a binding site for ligand X with a K_d of 54 mM. Protein B has a binding site for ligand X with a K_d of 58 mM. Answer the following questions based on this information: Ka for Protein B: - A) Which protein has a stronger affinity for ligand X? - a) Protein A. - b) Protein B. - B) Convert the K_d to K_a for both proteins. Ka for Protein A: _____ **PRACTICE**: You prepare a solution of protein and its ligand where the initial concentrations are [P] = 10 mM and [L] = 10 mM. At equilibrium you measure the concentration of the complex [PL] = 5 mM. If the protein-ligand reaction can be represented by $P + L \Longrightarrow PL$, what is the K_d of the reaction under these conditions? - a) 0.05 mM. - c) 5 mM. - e) 20 mM. - b) 20 nM. - d) 25 μM. - f) 25 mM.