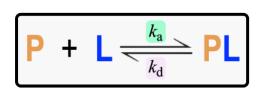
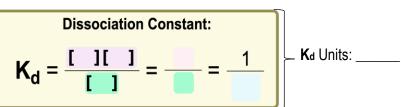
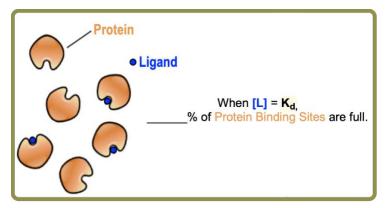
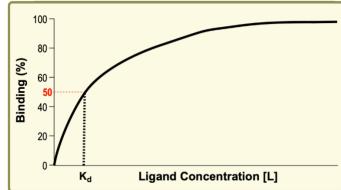

CONCEPT: PROTEIN-LIGAND EQUILIBRIUM CONSTANTS

Protein-Ligand Association Constant (Ka)


- •Recall: equilibrium constant (_____) is the ratio of [Product] over [Reactant] at equilibrium.
- Association constant (): equilibrium constant for the of the protein & ligand into a complex.
 - □ Don't confuse the protein-ligand-association constant (**K**_a) with the acid-dissociation constant (which is also "K_a").
- Ka and protein-affinity for ligand are ______ proportional.
 - □ Therefore, the _____ the **K**_a value, the *stronger* the affinity a protein has for that ligand.
 - \Box K_a has units of _____ and is the ____ of the dissociation constant ____ (K_a = 1/K_d).




Protein-Ligand Dissociation Constant (Kd)


- •Dissociation constant (_____): equilibrium constant for _____ of protein-ligand-complex back into P + L.
 - □ Recall: **K**_d and K_a are _____ of each other, so **K**_d has units of _____.
 - □ **K**_d is used _____ often than K_a to express the protein-affinity for a ligand.

- ●The _____ &___ are very similar to each other (ex. **K**d & protein-affinity for ligand are _____ proportional).
 - $\hfill\Box$ Therefore, the ______ the Kd value, the *stronger* the affinity a protein has for that ligand.
 - \square Similar to how $K_m = [S]$ that allows $V_0 = \frac{1}{2}V_{max}$, $K_d = [\underline{\hspace{1cm}}]$ that allows $\underline{\hspace{1cm}}$ L-binding-sites to be occupied.

CONCEPT:	PROTEIN-L	IGAND	FOUII	IRRILIM	CONSTAN	TS
CUNCLE I.	LIXO I LIIN-L	JUNIO		IDIXION	CONSTAN	10

PRACTICE: Protein A has a binding site for ligand X with a K_d of 54 mM. Protein B has a binding site for ligand X with a K_d of 58 mM. Answer the following questions based on this information:

Ka for Protein B:

- A) Which protein has a stronger affinity for ligand X?
 - a) Protein A.
- b) Protein B.
- B) Convert the K_d to K_a for both proteins.

Ka for Protein A: _____

PRACTICE: You prepare a solution of protein and its ligand where the initial concentrations are [P] = 10 mM and [L] = 10 mM. At equilibrium you measure the concentration of the complex [PL] = 5 mM. If the protein-ligand reaction can be represented by $P + L \Longrightarrow PL$, what is the K_d of the reaction under these conditions?

- a) 0.05 mM.
- c) 5 mM.
- e) 20 mM.

- b) 20 nM.
- d) 25 μM.
- f) 25 mM.