
CONCEPT: ALPHA HELIX HYDROGEN BONDING

- ●α-helices are stabilized by intrachain hydrogen bonds between N-H and C=O groups in the peptide
 - R-group hydrogen bonding is _____ involved in α-helix stabilization.
- •Each C=O group of a residue hydrogen bonds with the N-H group ____ residues away (residue "X" bonds with X+4).
 - \Box Therefore, first & last *four* residues of an α -helix do fully participate in α -helix hydrogen bonding.

EXAMPLE: α-helix H-bonding.

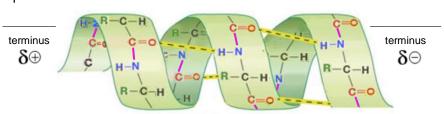
EXAMPLE: Which residue does the carbonyl group of the 21st residue of a 30 residue α-helix hydrogen bond to?

- a) 25th residue.
- b) 26th residue.
- c) 32nd residue.
- d) 33rd residue.

PRACTICE: The oxygen-storage protein myoglobin has 8 α-helices in its single polypeptide chain. Its 67th residue is near the center of a 19 residue α-helix. Which residue does the amino group of myoglobin's 67th residue hydrogen bond to?

a) 63rd residue

b) 64th residue


c) 71st residue

d) 72nd residue

α-Helix Net Dipole

- •α-helices have an overall net _____ due to the direction of polar peptide bonds & intrachain hydrogen bonds.
 - □ Net electron density is shifted towards the ____-terminus.
 - \Box N-terminus of the α -helix has a net charge while the C-terminus has a net charge.

EXAMPLE: α-helix Net Dipole.

PRACTICE: True or False: Negatively charged residues near the α-helix N-terminal are stabilizing due to its net dipole.

a) True.

b) False.

CONCEPT: ALPHA HELIX HYDROGEN BONDING

PRACTICE: Triose phosphate isomerase (TPI) is a crucial enzyme involved in the glycolysis pathway and contains 14 α -helices. Considering the net dipole of the α -helix, which of the following would be most destabilizing to TPI's structure?

- a) An electric dipole spanning several peptide bonds throughout its α-helices.
- b) The presence of Glu residues near the N-terminus of its α -helices.
- c) The presence of Arg residues near the C-terminus of its α -helices.
- d) The presence of Lys residues near the N-terminus of its α -helices.

PRACT A)	FICE: The hemagglutinin protein in influenza virus contains a remarkably long α-helix with 53 residues. How long is the α-helix?
B)	How many turns does this α-helix have?
C)	How many hydrogen bonds are present in this α-helix?

PRACTICE: Which of the following statements about α-helices is false?

- a) Myoglobin & hemoglobin α-helices are right-handed α-helices.
- b) Each residue of an α-helix creates a 100° turn of the α-helix backbone.
- c) The core of an α -helix is tightly packed with backbone atoms.
- d) α-helices have an overall macrodipole with a partially positive C-terminus & partially negative N-terminus.
- e) Hydrogen bonds that hold the α -helix together are about parallel to the axis of the helix.