CONCEPT: APPARENT K_M AND V_{MAX} - Presence of inhibitors can result in an apparent change to either the _____ and/or ____ of an enzyme. - •_____K_m & V_{max} (K ^{app}_{max} and V ^{app}_{max}): the resulting K_m & V_{max} that an enzyme has in the *presence* of an inhibitor. ## K $_{m}^{app}$ & V $_{max}^{app}$ Are Affected by α And/Or α' - ullet α and/or α ' indicate the degree at which the K_m^{app} and V_{max}^{app} are altered by the inhibitor. - \Box Depending on the _____ of inhibitor, α or α ' may affect the K_{m}^{app} and/or V_{max}^{app} in _____ ways. Depending on the _____ of inhibitor: Effect on K_m Effect on V_{max} $M_m = M_m M_$ **EXAMPLE:** The K_I value for a certain competitive inhibitor is 2 μ M. When no inhibitor is present, the K_m value is 10 μ M. Calculate the apparent K_m when 4 μ M inhibitor is present. **PRACTICE:** Competitive inhibitor A at a concentration of 2 μ M doubles the apparent K_m for an enzymatic reaction, whereas competitive inhibitor B at a concentration of 9 μ M quadruples the apparent K_m. What is the ratio of the K_I for inhibitor B to the K_I for inhibitor A? (Hint: use the table above). - a) 1.5 - b) 3 - c) 4 - d) 2/3 - e) 1/4 ## **CONCEPT:** APPARENT K_M AND V_{MAX} **PRACTICE:** The K_I value for a certain competitive inhibitor is 10 mM. When no inhibitor is present, the K_m value is 50 mM. Calculate the apparent K_m when 40 mM inhibitor is present. (Hint: use the table on the previous page). - a) 20 mM. - b) 10 mM. - c) 100 mM. - d) 150 mM. - e) 250 mM. **PRACTICE:** Uncompetitive inhibitor A at a concentration of 4 mM cuts the K_m^{app} in half for an enzymatic reaction, whereas the K_m^{app} is one-fourth the K_m in the presence of 18 mM uncompetitive inhibitor B. What is the ratio of the K_I' for inhibitor A to the K_I' for inhibitor B? (Hint: use the table on the previous page). - a) 3/2 - b) 2/3 - c) 1/3 - d) 3 - e) 1