CONCEPT: APPARENT K_M AND V_{MAX}

- Presence of inhibitors can result in an apparent change to either the _____ and/or ____ of an enzyme.
- •_____K_m & V_{max} (K ^{app}_{max} and V ^{app}_{max}): the resulting K_m & V_{max} that an enzyme has in the *presence* of an inhibitor.

K $_{m}^{app}$ & V $_{max}^{app}$ Are Affected by α And/Or α'

- ullet α and/or α ' indicate the degree at which the K_m^{app} and V_{max}^{app} are altered by the inhibitor.
 - \Box Depending on the _____ of inhibitor, α or α ' may affect the K_{m}^{app} and/or V_{max}^{app} in _____ ways.

Depending on the _____ of inhibitor: Effect on K_m Effect on V_{max} $M_m = M_m = M_$

EXAMPLE: The K_I value for a certain competitive inhibitor is 2 μ M. When no inhibitor is present, the K_m value is 10 μ M. Calculate the apparent K_m when 4 μ M inhibitor is present.

PRACTICE: Competitive inhibitor A at a concentration of 2 μ M doubles the apparent K_m for an enzymatic reaction, whereas competitive inhibitor B at a concentration of 9 μ M quadruples the apparent K_m. What is the ratio of the K_I for inhibitor B to the K_I for inhibitor A? (Hint: use the table above).

- a) 1.5
- b) 3
- c) 4
- d) 2/3
- e) 1/4

CONCEPT: APPARENT K_M AND V_{MAX}

PRACTICE: The K_I value for a certain competitive inhibitor is 10 mM. When no inhibitor is present, the K_m value is 50 mM. Calculate the apparent K_m when 40 mM inhibitor is present. (Hint: use the table on the previous page).

- a) 20 mM.
- b) 10 mM.
- c) 100 mM.
- d) 150 mM.
- e) 250 mM.

PRACTICE: Uncompetitive inhibitor A at a concentration of 4 mM cuts the K_m^{app} in half for an enzymatic reaction, whereas the K_m^{app} is one-fourth the K_m in the presence of 18 mM uncompetitive inhibitor B. What is the ratio of the K_I' for inhibitor A to the K_I' for inhibitor B? (Hint: use the table on the previous page).

- a) 3/2
- b) 2/3
- c) 1/3
- d) 3
- e) 1