CONCEPT: PHYSICAL PROPERTIES OF BIOLOGICAL MEMBRANES

bilayer sheet.

Lateral & Transverse Diffusion

□ Extremely	process (could take	ke <i>day</i> s without an enzyme).	.,
□ Extremely	process (could tak	ke <i>day</i> s without an enzyme).	lipid compositions.
•	. ,	•	opposite sheet of a lipid bilayer.
<i>nsver</i> se (or "	nop) Dinusion. Catalyzeu t	danisis of lipids doloss to the	opposite sheet of a lipid bilayer.
	flon") Diffusion: catalyzed t	transfer of lipids across to the	opposite sheet of a linid hilayer
□ Extremely	lateral movement.		
	Diffusion: uncatalyzed, lateral	movement of lipids along the	same sheet of a lipid bilayer.
es of lipid diffusion	n describe the fluid-like motion	ı of lipids within a bilayer:	
		·	es of lipid diffusion describe the fluid-like motion of lipids within a bilayer: Diffusion: uncatalyzed, lateral movement of lipids along the

Enzymes Catalyzing Transverse Diffusion

Diffuses along

types membrane-embedded-_____ catalyze transverse diffusion:
pase: flips lipids from the outer sheet to the _____ sheet.
pase: flops lipids from the inner sheet to the _____ sheet.
No ATP ____ 3) ____ ase: scrambles lipids in either direction across the bilayer, down the concentration gradient.

Diffuses across to _

bilayer sheet.

CONCEPT: PHYSICAL PROPERTIES OF BIOLOGICAL MEMBRANES

PRACTICE: The mobility of lipids in membranes is best described by:

- a) Slow lateral diffusion and slow transverse diffusion.
- c) Fast transverse diffusion and slow lateral diffusion.
- b) Fast lateral diffusion and slow transverse diffusion.
- d) Fast lateral diffusion and fast transverse diffusion.

<u>Transition Temperature of Lipid Bilayers</u>

PRACTICE: The fluidity of a bilayer is generally increased by:

- a) The binding of water to the fatty acyl side chains.
- b) An increase in fatty acid chain length.
- c) An increase in the number of double bonds in the fatty acid hydrocarbon chains.
- d) A decrease in temperature.

PRACTICE: The transition temperature, Tm, for a sample cell's membrane was found to be much higher than a reference cell's membrane. What can be said about the membrane contents based on this experiment?

- a) The sample cell is likely to have a higher cis-fatty acid content than the reference cell.
- b) The sample cell is likely to have lower saturated fat content than the reference cell.
- c) The sample cell is likely to have more polyunsaturated fatty acids than the reference cell.
- d) The sample cell is likely to have higher saturated fat content than the reference cell.

CONCEPT: PHYSICAL PROPERTIES OF BIOLOGICAL MEMBRANES

PRACTICE: Which of the following would increase the transition temperature of a membrane?

- a) A decrease in the fatty acid tail length.
- b) An increase in the number of double bonds in the fatty acid chains.
- c) Loose packing of fatty acid tails.
- d) Free fatty acids in the environment.
- e) None of the above would increase the transition temperature.