- Signal transduction transmission of molecular signals leading to change in metabolism, gene expression, etc.
 - □ **Reception** ligand binds to a receptor effecting a change in the protein, ligands are specific to receptors
 - □ *Transduction* a series of proteins and other molecules interact in response to receptor-ligand binding
 - □ **Response** a change is elicited determined by the cell's receptors and signal transduction pathways

EXAMPLE:

- Hormone signaling molecule that affects gene expression, cell division, and growth
 - ☐ Hormone's structures make them bind only to specific receptors
 - □ The presence/absence of specific receptors for a hormone determine a cell's response to the signal
 - □ Signal amplification allows for few signaling molecules to exert a widespread and significant effect

EXAMPLE:

- Phosphorylation cascades activate and deactivate a series of proteins through the transfer of phosphate groups
- Second messengers intracellular signaling molecules involved in signal transduction pathways

- Etiolation plant responses to the absence of sunlight: growth toward sun, longer internodes, chlorosis
- Detiolation plant responses to sunlight, in part regulated by phytochromes
- Photomorphogenesis plant growth patterns responding to different spectrums of light
- *Tropism* movement of a plant in response to an environmental stimulus
- **Phototropism** growth toward or away from light
 - □ **Photoreceptors** proteins that respond to stimulation from certain wavelengths of light
 - **Phototropins** blue-light photoreceptor involved in phototropism, involved in stomata opening/closing

EXAMPLE:

- Plants use red (660-700nm) and blue light (430-470nm) for photosynthesis, sensitive to light of those wavelengths
- Far-red light (>710nm) is not absorbed by photosynthetic pigments, passes through leaves, and indicates shade
- Red/far-red switch red light promotes seed germination, far-red light inhibits it
 - □ Photoreversibility molecule has two forms that react to different wavelengths of light, changing its conformation
 - □ **Phytochrome** photoreversible photoreceptor sensitive to red and far-red wavelengths of light
 - Light stimulation causes phosphorylation/desphosphorylation inducing conformational changes
- Shade avoidance far-red light causes plants to lengthen stems or induce branching, attempting to grow into direct light

- Auxin (indoleacetic acid) hormone responsible for plant growth in response to light
 - □ Coleoptiles release auxin allowing seedlings to bend towards light
 - □ Cholodny-Went hypothesis auxin produced at the tip moves from light to shade side of the plant
 - Asymmetric auxin distribution causes cells on the shade side to grow more than those in light

EXAMPLE:

- Acid-growth hypothesis proton pumps concentrate H+ in cell wall causing expansins to allow water in
 - □ *Expansins* proteins that loosen H-bonds between cellulose fibers, that are normally water-tight
 - □ H+ creates electrochemical gradient that brings K+ into the cell, water moves in based on osmotic gradients

- Auxin plays a central role in many plant functions, and is transported in a polar manner from shoots to roots
 - □ Polar transport unidirectional transport, transport of auxin is polar and unaffected by gravity
 - □ Pattern formation of developing plants and phyllotaxy (the arrangement of leaves on a stem)
 - □ Abscission shedding of leaves and fruits
 - □ Apical dominance central plant stem is dominant over lateral stems, and controls growth

- Circadian rhythms daily (~24 hour) cycles generated internally, but can be influenced by environment
 - □ Cryptochromes blue-light receptor thought to play a role in circadian rhythms

- Photoperiodism physiological response to seasonal changes in the lengths of day/night
 - □ Long-day plants bloom when days are longest during summer
 - □ Short-day plants bloom when days are shorter during spring and late-summer/fall
 - □ Day-neutral plants day length has no effect on blooming
 - □ Vernalization pretreatment of plant with cold necessary for photoperiod blooming response
- Florigen hypothetical hormone that induces flowering