CONCEPT: TELOMERES

●Telomeres:	coding DNA, consisting of repo	eating sequences, at the tips or ends of eukaryotic chromosomes.
□ In many	cells, telomeres	with each round of DNA replication (has been linked to aging).
□ Significa	ant telomere loss signals cell division	n to in a normal cell.
■Telomerase: found in some cells that catalyzes the lengthening of telomeres.		
⊓ Henally	everessed garm calls & in	cells, allowing them to maintain telemere length

PRACTICE: What are telomeres?

- a) The region of DNA that holds two sister chromatids together.
- b) Enzymes that elongate a new DNA strand during replication.
- c) The sites of origin of DNA replication.
- d) The ends of linear chromosomes.

PRACTICE: Which of the following effects might be caused by reduced or very little active telomerase activity?

- a) Cells may become cancerous.
- b) Telomere lengthens in sex cells.
- c) Cells age and begin to lose function.
- d) Cells continue to function normally.

CONCEPT: TELOMERES

PRACTICE: Which of the following types of cells are affected most by telomere shortening?

- a) Prokaryotic cells only.
- b) Eukaryotic cells only.
- c) Prokaryotic and eukaryotic cells.
- d) Animal cells only.

PRACTICE: Telomere shortening puts a limit on the number of times a cell can divide. Research has shown that telomerase can extend the life span human cells. How might adding telomerase affect cellular aging?

- a) Telomerase will speed up the rate of cell division.
- b) Telomerase stops telomere shortening and slows or stops cellular aging.
- c) Telomerase shortens telomeres, which slows or stops cellular aging.
- d) Telomerase would have no effect on cellular aging.