CONCEPT: PROPERTIES OF WATER: THE UNIVERSAL SOLVENT

 Water is described as the "Unit 	iversal	" because it can dissolve SO MANY	·
□ Solvent : the substan	ce that does the	e dissolving, usually found in	_ amounts (usually water)
□ Solute : the substance that gets dissolved by the <i>solvent</i> , usually found in			amounts.
□ Solution : the		of the solutes & solvent.	
□ Water molec	ules form a	shell around individual solute molecules	

EXAMPLE: Table Salt (NaCl) Dissolving in Water.

PRACTICE: A solution in which water is the solvent is called a(n) _____ solution.

a) Polar.

b) Aqueous.

c) Hydrophobic.

d) Complete.

PRACTICE: The substance in a mixture that is dissolved is called the:

- a) Solution.
- b) Solvent.
- c) Solute.
- d) Aqueous solution.

PRACTICE: What is the charge of the solute molecule in the image below based on the polarity of water?

a) Positively charged.

- b) Negatively charged.
- c) Uncharged.
- d) Non-polar and hydrophobic.

CONCEPT: PROPERTIES OF WATER: THE UNIVERSAL SOLVENT

<u>Homogenous vs. Heterogenous Solutions</u>

- _____genous solutions: uniformly mixed solutions where all parts are _____ distributed.
- _____genous solutions: mixed solutions where parts are _____ distributed.

EXAMPLE: Homogenous vs. Heterogeneous Solutions.

PRACTICE: The components of a heterogenous solution are _____ distributed throughout.

a) Equally.

b) Unequally.

c) Uniformly.

Hydrophilic vs. Hydrophobic

- •Hydro-_____ to it (water "loving").
 - _____ & _____ molecules tend to be hydrophilic (ex: *salts & ions*).
- •**Hydro-**_____: describes substances that do ______ dissolve in water (water "fearing").

 □ _____-polar molecules tend to be hydrophobic (ex. fats, oils, & waxes).

EXAMPLE: Salt vs. Oil in Water.

PRACTICE: Hydrophobic molecules:

- a) Are polar covalent molecules.
- c) Are nonpolar water "fearing" molecules.
- b) Easily dissolve in water.
- d) Are nonpolar water "loving" molecules.