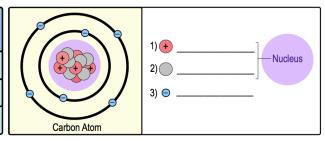

CONCEPT: ATOMS - SMALLEST UNIT OF MATTER

_____: anything that takes up space & has mass (ex. organisms, rocks, oceans, etc.). Matter □ All *matter* consists of at least 1 *chemical* _____. Chemical Element • Chemical Elements: pure substances made of only one type of ______. □ *Atom*: the _____ unit of an *element* (& therefore, the smallest unit of *matter*). Atom □ Atoms makes up both & matter.


EXAMPLE: Atoms are the Smallest Units of Matter.

Atomic Structure

• Atoms are made of _____ subatomic particles, each with a characteristic charge, mass & location in the atom.

Subatomic Particle	Electric Charge	Atomic Mass Unit (AMU)	Location
1 Proton	1		Nucleus
2 Neutron			
3 Electron	_	_	Orbiting Nucleus

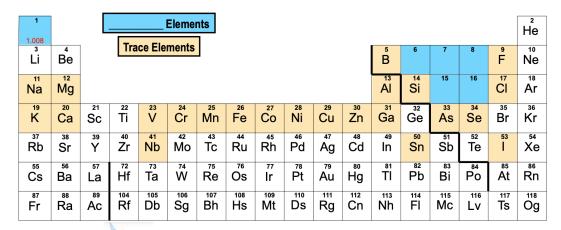
EXAMPLE: Negatively charged particles of atoms with almost no mass are called:

- a) Electrons.
- b) Protons.
- c) Neutrons.
- d) lons.
- e) Polymers.

PRACTICE: A proton _____:

- a) Has one positive charge. b) Has one AMU. c) Is found in the nucleus of the atom.
- d) Only a and b are true. e) a, b, and c are true.

CONCEPT: ATOMS - SMALLEST UNIT OF MATTER


Elements of Life

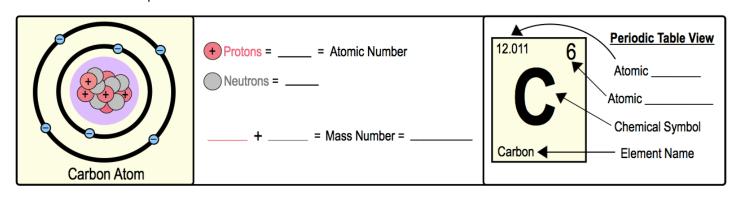
- •Of all the known elements, only a _____ subset is found in living organisms.
 - □ Periodic Table of _____: arranges all of the known elements based on their chemical properties.

●~97% of the mass of most life is composed of Carbon, Hydrogen, Nitrogen, Oxygen, Phosphorus & Sulfur (CHNOPS).

□ _____ Elements: required for life in _____ amounts.

EXAMPLE: Periodic Table of Elements.

ī	Če								_					
	Τ̈́h	Pa	Ű	Ν̈́p	P⁰u	Åm	Cm	Bk	cru	Ës	Fmm	Md	No	Lr


Atomic Properties

• Each atom of an element has *unique* properties:

□.	Number: # of	in the nucleus (atomic number	each element).
□.	Number: mass of the nucleus (# o	f &).

□ Atomic mass (or atomic _____) = ____ total mass of all atoms of an element.

EXAMPLE: Atomic Properties of a Carbon Atom.

CONCEPT: ATOMS - SMALLEST UNIT OF MATTER

EXAMPLE: The atomic number of an element is equal to the number of:

- a) Neutrons only.
- b) Protons plus electrons.

c) Protons plus neutrons.

- d) Neutrons plus electrons.
- e) Protons only.

PRACTICE: The average oxygen atom has a mass number of 16 and an atomic number of 8. This means that the number of neutrons in this oxygen atom is:

- a) 24.
- b) 8.
- c) 16.
- d) 4.
- e) 2.

Electron Orbitals & Energy Shells

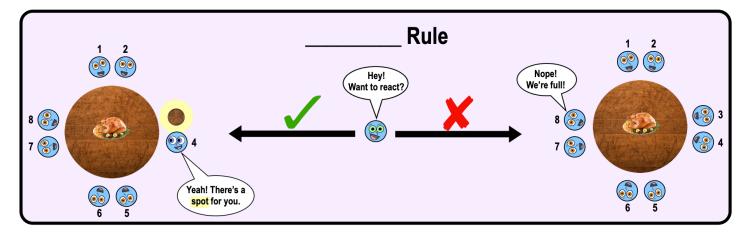
Electror	n: 3D-regio	ns around a nucle	us where electron	s are found (envisioned in 2D as energy shells).
	Shells <i>closer</i> to the nucleus	are	in energy than di	stant shells, which are <i>higher</i> in energy.	
	□ Valence Electrons: electron	s found in the		_ energy shell (<i>valence shell</i>).	
	□ 1 st shell holds up to	electrons; 2nd she	ll holds up to	electrons; each shell holds varying #'s.	

EXAMPLE: Energy Shells for C, H, N, O, P, S.

Carbon	Hydrogen	Nitrogen	Oxygen	Phosphorus	Sulfur
Electron Shell Nucleus	H			(P)	
Number 12 C Chemical Symbol	Ħ	14 N	16 O	31 P 15	³² S

PRACTICE: How many valence electrons does an atom with five total electrons have?

- a) 5.
- b) 7.
- c) 3.
- d) 2.
- e) 1.


PRACTICE: Which of the following is true about electron energy shells?

- a) They represent regions around the nucleus in which the electrons orbit.
- b) The shells closest to the nucleus contain electrons with higher energy.
- c) They contain electrons of the same energy.
- d) a and b only.
- e) a and c only.

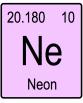
CONCEPT: ATOMS- SMALLEST UNIT OF MATTER

Octet Rule

- •______ Rule: atoms are more stable (less reactive) when their valence shells are fully occupied.
 - □ Recall: 1st energy shell holds up to _____ electrons; 2nd energy shell holds up to _____ electrons.
 - □ Atoms are _____ reactive when their outer valence shells are _____.

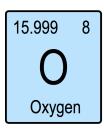
EXAMPLE: According to the octet rule, electron distribution in each shell of a neutral nitrogen atom (atomic number 7) is:

a) 1,5.


- b) 2,4.
- c) 2,5.
- d) 1,4.

PRACTICE: An average neon atom (Ne) is unreactive for which of the following reasons?

a) It has 7 valence electrons.


- b) It has 8 valence electrons.
- c) Its valence shell is full of electrons.
- d) It has 20 valence electrons.

e) b and c only.

PRACTICE: How many electrons does an Oxygen atom need to fulfill the octet rule by filling its valence shell?

- a) 8.
- b) 4.
- c) 1.
- d) 2.
- e) 6.

