
CONCEPT: LIGHT REACTIONS OF PHOTOSYNTHESIS

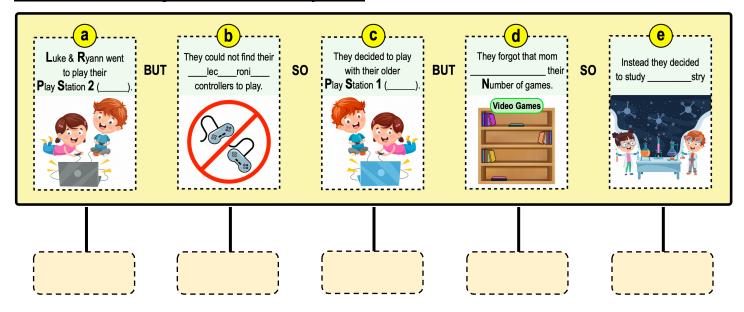
●Light R	membrane/space.				
	⊐ Synthesizes	. &	to "power" the Calvin Cyc	cle while producing	as a byproduct
_	¬ NADDU: an	,	carrier that transports	anaraizad alaatra	20

EXAMPLE: The light reactions are powered by ______ energy. In normal photosynthesis the products of the light reactions are used to power _____.

- a) potential; photorespiration.
- b) sunlight; photorespiration.
- c) sunlight; the Calvin cycle.
- d) potential; the Calvin cycle.

PRACTICE: Describe the primary function of the light reactions of photosynthesis.

- a) Production of NADPH used in cellular respiration.
- b) Use of ATP to make glucose.
- c) Conversion of chemical energy to light energy.
- d) Production of ATP and NADPH.


CONCEPT: LIGHT REACTIONS OF PHOTOSYNTHESIS

Steps of the Light Reactions

Steps of the Light Reactions							
●Recall: Light Reactions occur in the	within chloroplasts, which contain <i>photosystems</i> .						
a) Photosystem II absorbs photons of lig	ght to energize <i>electrons</i> donated by a molecule.						
□ Water molecules are	to provide electrons & react to form gas (O ₂).						
b) Electrons move from Photosystem _	to Photosystem via an Electron Transport Chain.						
□ Generates a hydrogen ion () gradient.							
c) Photosystem I electrons are energized even MORE & continue through the Electron Transport Chain.							
d) NADP+ serves as the "final electron ac	cceptor" & is to form						
e) Hydrogen ion () gradient formed by the ETC is used to generate some via Chemiosmosis.							
EXAMPLE: The light reactions of photosynthesis	i.						
Step	os of the Light Reactions						
Photosystem : Electron 7	Transport Photosystem Chemiosmosis						
Photosystem Electron 1 Cha							
Thylakoid Membrane Thylakoid Space H 1/2 H H Thylakoid Space							
	& ATP go to cycle.						
PRACTICE: Where do the electrons that are exci	ited in photosystem II come from?						
a) CO ₂ . b) O ₂ . c) G	lucose. d) Photosystem I. e) Water.						
PRACTICE: During the light reactions, photosyst	tem I functions to, and photosystem II functions to						
a) Reduce CO ₂ ; oxidize NADPH.	a) Reduce CO ₂ ; oxidize NADPH. c) Produce O ₂ ; oxidize NADPH.						
b) Synthesize ATP; Produce O ₂ .	d) Reduce NADP+; oxidize H ₂ O.						

CONCEPT: LIGHT REACTIONS OF PHOTOSYNTHESIS

How to Memorize the Light Reactions of Photosynthesis

PRACTICE: What is the correct order of steps of the light reactions of Photosynthesis?

- a) photosystem I, ETC, photosystem II, NADP+ reduction, chemiosmosis.
- b) photosystem I, photosystem II, ETC, NADP+ reduction, chemiosmosis.
- c) photosystem II, ETC, photosystem I, NADP+ reduction, chemiosmosis.
- d) photosystem II, photosystem I, ETC, NADP+ reduction, chemiosmosis.