CONCEPT: C3, C4 & CAM PLANTS • In hot temperatures, C3 plants are _____ susceptible to photorespiration, but some plants have evolved a solution. □ ____ & ____ plants can withstand hot temperatures & _____ photorespiration. ## **Comparing 3 Types of Photosynthetic Plants** 1) Plants: ____ Carbon fixation round; ____-C intermediate; Light & Calvin Cycle in the _____ cell. 2) Plants: ___ Carbon fixation rounds; ___-C intermediate; Light & Calvin Cycle in ____ cells. □ 4-C intermediate can supply additional _____ when CO₂ levels are low from closed stomata. 3) Plants: ___ Carbon fixation rounds; ____-C intermediate; Light & Calvin Cycle in the _____ cell. □ Carbon fixation rounds occur at different times of the day (stomata _____ at night but closed at day). **CONCEPT:** C3, C4 & CAM PLANTS PRACTICE: A plant that opens its stomata only at night is a - a) C₂ plant. - b) CAM plant. - c) C₃ plant. - d) C₄ plant. **PRACTICE:** CAM plants keep stomata closed in the daytime to reduce the loss of water. They can do this because they: - a) Fix CO₂ into organic 4-Carbon compounds during the night. - b) Fix CO₂ into organic 4-Carbon compounds in the bundle-sheath cells. - c) Fix CO₂ into pyruvate in the mesophyll cells. - d) Use photosystem I and photosystem II at night only.