CONCEPT: C3, C4 & CAM PLANTS

• In hot temperatures, C3 plants are _____ susceptible to photorespiration, but some plants have evolved a solution.

□ ____ & ____ plants can withstand hot temperatures & _____ photorespiration.

Comparing 3 Types of Photosynthetic Plants

1) Plants: ____ Carbon fixation round; ____-C intermediate; Light & Calvin Cycle in the _____ cell.
2) Plants: ___ Carbon fixation rounds; ___-C intermediate; Light & Calvin Cycle in ____ cells.

□ 4-C intermediate can supply additional _____ when CO₂ levels are low from closed stomata.

3) Plants: ___ Carbon fixation rounds; ____-C intermediate; Light & Calvin Cycle in the _____ cell.

□ Carbon fixation rounds occur at different times of the day (stomata _____ at night but closed at day).

CONCEPT: C3, C4 & CAM PLANTS

PRACTICE: A plant that opens its stomata only at night is a

- a) C₂ plant.
- b) CAM plant.
- c) C₃ plant.
- d) C₄ plant.

PRACTICE: CAM plants keep stomata closed in the daytime to reduce the loss of water. They can do this because they:

- a) Fix CO₂ into organic 4-Carbon compounds during the night.
- b) Fix CO₂ into organic 4-Carbon compounds in the bundle-sheath cells.
- c) Fix CO₂ into pyruvate in the mesophyll cells.
- d) Use photosystem I and photosystem II at night only.