CONCEPT: INTRODUCTION TO POLYMERASE CHAIN REACTION

 When a researcher studies the DNA se 	equence of a <i>specific</i> gene in a genome, they need copies of it.
●Polymerase Chain Reaction (_): technique used to rapidly isolate & amplify a specific sequence of DNA.
□ <i>Amplify</i> : to make	_ copies.
□ Unlike DNA cloning (which us	ses living cells), PCR takes place in a

Why do we use PCR?

 PCR is a quick & efficient process for generating many 	copies of DNA in a test tube.
□ DNA cloning is more accurate, BUT	efficient (in the cell: less mutations but longer time to amplify).

EXAMPLE: PCR can be used to amplify the amount of DNA taken from a crime scene so a detective can investigate it.

PRACTICE: PCR is used to _____.

- a) Amplify a single gene or small sequence of DNA.
- b) Create DNA without introns.
- c) Insert foreign DNA into a host cell where it can be replicated.
- d) Cut segments of DNA creating complimentary sticky ends.
- e) None of these.

CONCEPT: INTRODUCTION TO POLYMERASE CHAIN REACTION

Components of a Polymerase Chain Reaction

- Recall: PCR differs from DNA cloning in the location that DNA is replicated (PCR in a test tube & cloning in a cell).
- The components of a PCR mixture include:
 - **a** Template _____ containing the sequence of interest for the study.
 - **b** 2 _____ that are complementary to *opposite* strands of DNA & are oriented *towards* each other.
 - A thermo-stable DNA ______ to synthesize the sequence of interest.
 - d All ____ deoxyribonucleotides used to synthesize DNA.

PRACTICE: PCR requires all of the following EXCEPT:

- a) Primers.
- b) DNA ligase.
- c) DNA polymerase.
- d) DNA of interest.
- e) Deoxyrobinucleotides.

PRACTICE: The polymerase chain reaction:

- a) Doubles the template sequence of DNA with each cycle.
- b) Makes a single copy of the template sequence of DNA with each cycle.
- c) Is used to determine the sequence of a region of DNA.
- d) All are correct.