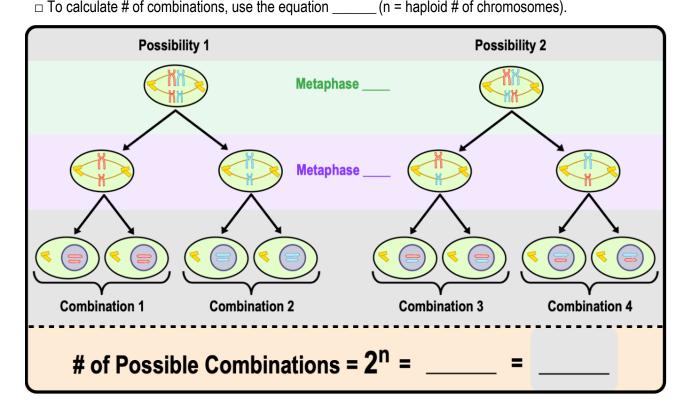

| <ul><li>Meiosis creates genetic diversity via events:</li></ul> | 1) Crossing Over       | &               | <ol><li>Independent Assortment.</li></ol> |  |
|-----------------------------------------------------------------|------------------------|-----------------|-------------------------------------------|--|
| • Crossing Over: process in which pairs of homologous           | chromosomes            |                 | genetic material.                         |  |
| □ Formsidentical-sister chromatids du                           | ring                   | I of meiosis I. |                                           |  |
| □ Synapsis: process where homologous pairs _                    | their DNA s            | equen           | ce at similar <i>alleles</i> .            |  |
| □ Chiasma: sites of crossing over (attachment s                 | ites) between homologo | us chro         | mosomes.                                  |  |

**EXAMPLE:** Crossing Over during Prophase I.



PRACTICE: Which of the following processes occurs when homologous chromosomes cross over in meiosis I?


- a) Two sister chromatids get tangled, resulting in one re-sequencing its DNA.
- b) Two sister chromatids exchange identical pieces of DNA.
- c) Maternal alleles are "corrected" to be like paternal alleles and vice versa.
- d) Corresponding segments of non-sister chromatids from homologous chromosomes are exchanged.

**PRACTICE:** Crossing over involves each of the following *EXCEPT*:

- a) The transfer of DNA between two non-sister chromatids.
- b) The transfer of DNA between two sister chromatids.
- c) The formation of a synaptonemal complex.
- d) The alignment of homologous chromosomes.
- e) All of the above are involved in crossing over.

## **Independent Assortment**

| <ul><li>During</li></ul> | I, pairs of homologous chromosomes a                  | re independently & | aligned         |
|--------------------------|-------------------------------------------------------|--------------------|-----------------|
|                          | Results in an ENORMOUS amount of possible genetic     |                    | during meiosis. |
|                          | <b>T</b> 1 1 ( 11 t 1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' | 1 1:1// 6 1        | <b>\</b>        |



**EXAMPLE:** For a species with a haploid number of 23 chromosomes, how many combinations of maternal and paternal chromosomes are possible for the gametes based on the independent assortment of chromosomes during meiosis?

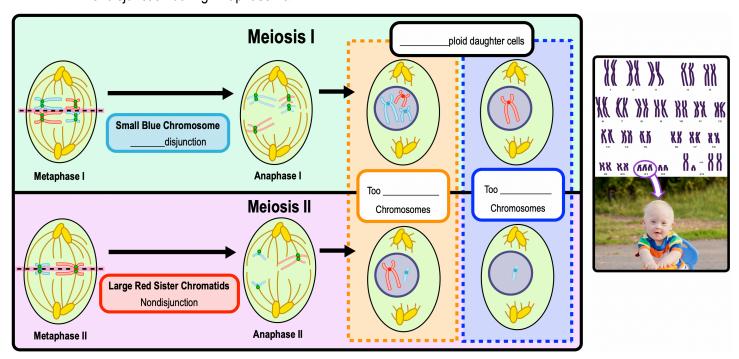
- a) 23.
- b) 46.
- c) About 1,000.
- d) About 8 million.

PRACTICE: How many genetically unique gametes can be created in an organism with 4 chromosomes?

- a) 256.
- b) 23.
- c) 16.
- d) 1 million.
- e) 4.

**PRACTICE:** During which of the following processes does independent assortment of chromosomes occur?

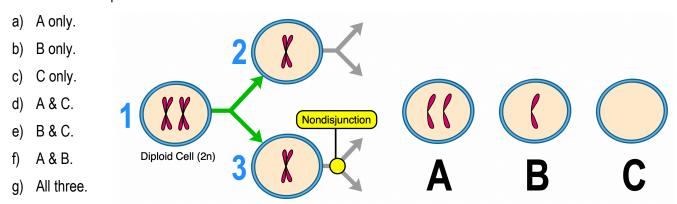
- a) In meiosis I only.
- b) In meiosis II only.
- c) In mitosis and meiosis I.
- d) In mitosis and meiosis II.
- e) In meiosis I and meiosis II.


PRACTICE: Independent assortment of chromosomes is a result of which of the following processes?

- a) The random way each pair of homologous chromosomes lines up at the metaphase plate.
- b) The random combinations of eggs and sperm during fertilization.
- c) The random distribution of the sister chromatids into the two daughter cells.
- d) The diverse combination of alleles that may be found within any given chromosome.

# **Nondisjunction**

- •An ERROR during meiosis I or II when chromosomes \_\_\_\_\_\_ to separate, resulting in aneuploid cells.
  - □ \_\_\_\_\_ Cells: cells containing either too many or too few chromosomes.
  - □ Can lead to genetic disorders (ex. trisomy-21/Down-Syndrome) or even cell death.


**EXAMPLE:** Nondisjunction during Anaphase I & II.



**PRACTICE:** Non-disjunction means that chromosomes:

- a) Do not cross over during synapsis.
- b) Do not replicate during interphase.
- c) Have serious mutations.
- d) Do not separate correctly from one another during anaphase.

**PRACTICE:** During meiosis, if nondisjunction occurs during anaphase II (shown below in cell #3) what are the possible gametes that can be produced from cell #3?



PRACTICE: \_\_\_\_\_ cells have an extra or missing chromosomes after meiosis due to nondisjunction during Meiosis I.

- a) Somatic cells.
- b) Gametes.
- c) Diploid Cells.
- d) Aneuploid Cells.
- e) Haploid Cells.
- f) Sperm Cells.