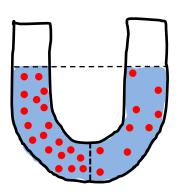
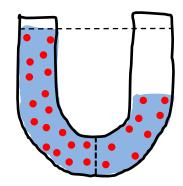
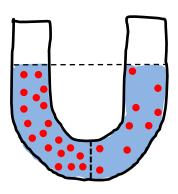

CONCEPT: WATER POTENTIAL

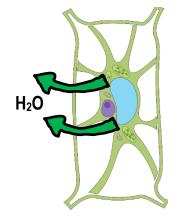
- Water potential (ψ) potential energy of water between two environments, differences determine direction of flow
 - $\Box \Psi = \Psi S + \Psi P$
 - □ Water always flows from areas of higher potential to those of lower potential
 - □ Measured in megapascals MPa (106 Pa), a unit of pressure
 - □ Water potential gradient causes water to move from soil up through plant against gravity

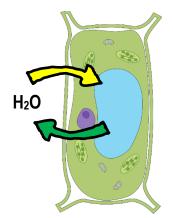

- Solute potential (ψS) solute concentration relative to pure water, high concentration means low solute potential
 - □ Water moves in response to differences in solute concentrations, from high to low solute potential
 - ☐ Has negative pressure relative to pure water (pure water solute potential = 0 MPa)
 - □ Cells always have dissolved solutes inside them

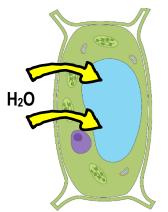



CONCEPT: WATER POTENTIAL

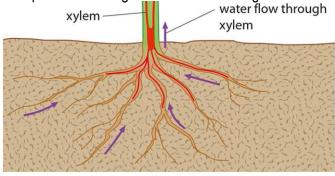
- Pressure potential (IP) physical pressure on water, can be positive or negative (tension)
 - □ Living cells have positive pressure
- When membranes are present water moves from high to low solute potential
- When membranes are absent water moves from high to low pressure potential

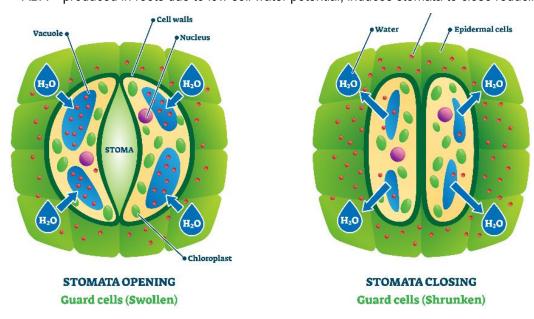

EXAMPLE:





- *Turgor pressure* pressure inside the cell from the vacuole swelling, pushing against the cell wall
 - □ **Protoplast** living content of a cell including the plasma membrane, does not include cell wall
- Wall pressure force exerted by the cell wall on cell contents (equal and opposite to turgor pressure)
 - □ Turgidity increases until wall pressure is induced
 - □ Flaccid no turgor pressure, meaning no pressure potential
 - Plasmolysis shriveling of protoplast due to water loss
 - Wilting loss of rigidity in non-woody plants due to a drop in turgor pressure in non-lignified cells

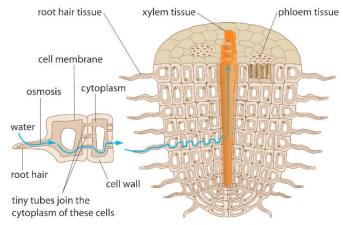



CONCEPT: WATER POTENTIAL

- Water potential in soil varies depending on the conditions
 - □ Dry soil has lower □ than plant roots
 - □ Damp soil has higher □ than plant roots do because the water has few dissolved solutes
 - □ Soil near the ocean has much lower water potential than roots due to all of the salt in the water
 - ☐ If soil water potential is low enough, water can flow from the plant into the soil
 - Plants can have adaptations allowing their roots to store high concentrations of solutes,

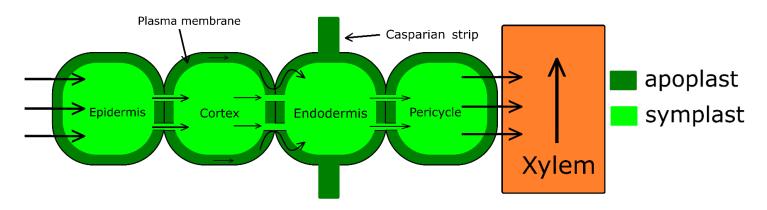
EXAMPLE:

- Warm air and dry air have low water potential, so warm, dry air provides a very low water potential
- *Transpiration* evaporation of water through plant leaves, pulls water up from roots
- Stomata control gas exchange by opening and closing, if air outside is dry (<100% humidity) water will evaporate
 - □ Opening: H+-pumps concentrate H+ outside the cell, depolarization causes K+ to enter the cell and water follows
 - ☐ Stomata open and close due to circadian rhythms, and close due to abscisic acid (ABA) hormone signal
 - ABA produced in roots due to low soil water potential, induces stomata to close reducing transpiration



- Photosynthesis-transpiration compromise balance between conserving water and maximizing photosynthesis
- Adaptations for water loss: cuticle, stomata in deep pits surrounded by trichromes, CAM and C4 photosynthesis

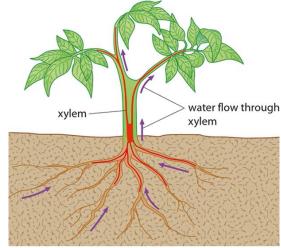
CONCEPT: XYLEM TRANSPORT


- Water flows from soil into the root hairs, and from there it moves to the xylem
 - □ Water moves into root hairs via osmosis

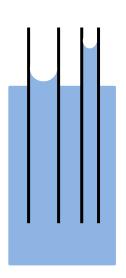
EXAMPLE:

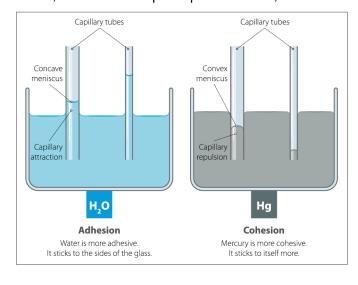
- *Transmembrane route* flow through aquaporins and directly through membrane
- Apoplastic route flow outside the plasma membranes, in spaces between cells and porous cell walls
 - □ **Apoplast** space outside of the plasma membrane, interrupted by the Casparian strip
 - □ Casparian strip waxy layer made of suberin secreted by endodermis to block off xylem
 - Allows endodermal cells to acts as filters, controls ion flow and concentration gradients
 - Water must eventually flow through endodermal cells to enter xylem due to Casparian strip
- **Symplastic route** flow through cytosol of cells
 - □ **Symplast** continuous network of plant cells linked by plasmodesmata

EXAMPLE: Pathway of water movement in the root

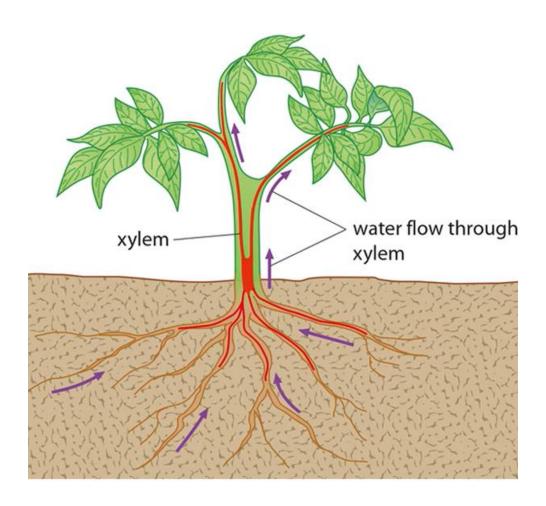

- Water flows through xylem without crossing membranes, moves due to difference in pressure potential
 - □ **Bulk flow** mass movement of molecules along a pressure gradient
 - □ **Xylem sap** water with some dissolved minerals, nutrients, and hormones

CONCEPT: XYLEM TRANSPORT


- Cohesion-tension is the most commonly accepted theory describing how water flows up xylem
- Root pressure theory positive pressure builds in root xylem from increased absorption of water relative to transpiration
 - □ lons are pumped into root xylem, creating negative water potential relative to soil
 - □ Water enters via osmosis due to solute concentrations, generating positive pressure
 - □ Stomata close at night, but roots continue to absorb ions and water from soil (root pressure highest in morning)
 - □ Guttation water forced out of leaves due to pressure


EXAMPLE:

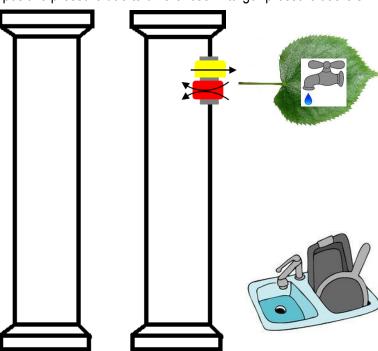
- Capillary action (capillarity) ability of a liquid to move through narrow spaces
 - □ **Adhesion** attraction between unlike molecules (water and the tube)
 - □ **Cohesion** attraction between like molecules (water with itself)
 - Meniscus concave surface boundary due to cohesion and adhesion
- □ Surface tension force between water molecules at the air-water interface
- Adhesion pulls up from container wall, surface tension pulls up from surface, cohesion transmits the pull



CONCEPT: XYLEM TRANSPORT

- Cohesion-tension theory evaporation from leaves creates negative pressure, pulling water up from roots
 - □ Leaves contain humid air that evaporates water when stomata are open and humidity is <100%
 - □ Evaporation lowers humidity in mesophyll, causing water to enter into the space from parenchyma cells
 - Steep menisci form at air-water interface in leaf cell walls creating tension
 - Each meniscus is small, but all their forces added together are significant
 - □ Tension pulls water up into leaves from roots, assisted by cohesion and adhesion
 - ☐ This process is "solar-powered", plants do not expend energy to create the upward force
 - Plants expend energy to take up ions in the roots, which allows water to enter root hairs via osmosis
- Negative pressure can be powerful, lignified secondary cell walls allow vascular tissue to withstand it

CONCEPT: PHLOEM TRANSPORT


- Translocation movement of sugars via bulk flow from source to sink
 - □ Source tissue where sugar enters the phloem
 - □ Sink tissue where sugar exits the phloem
 - □ **Phloem loading** sugars enter phloem via secondary active transport
 - H⁺-pumps concentrate H⁺ outside cell, allowing proton-sucrose symporter to bring sugar into phloem
 - □ **Phloem sap** mostly sucrose and other sugars dissolved in water, with some hormones and minerals

EXAMPLE:

- Pressure flow hypothesis most commonly agreed upon theory for movement of sap through phloem
 - □ Sugar is more concentrated at the source, causing water from xylem to enter due to the concentration gradient
 - Water from xylem increases turgor pressure in phloem
 - □ Sugar is less concentrated at the sink, causing water to leave the phloem and enter the xylem
 - Water leaving phloem reduces turgor pressure
 - □ Bulk flow results from positive pressure due to differences in turgor pressure at the sink and the source

