Sources of Genetic Variation

- ◆ Recall: evolution requires _____ variation.
- ◆ Two ways to talk about genetic variation in a population:

PRACTICE

Which process ensures that alleles are always found in new combinations?

- a) Natural selection.
- b) Sexual reproduction.
- c) Genetic drift.
- d) Mutation.

Mutations

◆ Mutations: changes in the DNA introduce _____ variation → _____ & _____.

◆ Mutations can introduce both new _____ & new _____.

EXAMPLE

Fill in the Venn Diagram below with the statements from the box. If a statement applies to mutations that create both new alleles and new genes, place it in the overlapping section of the two circles.

- a) Can come from a change in the composition of chromosomes.
- b) Can be created from changes to a small number of base pairs in the DNA sequence.
- c) Increase genetic variability.
- d) Can introduce DNA from a different species.
- e) Can be created by gene duplications.

PRACTICE

Mutations that don't impact the fitness of an allele can be called?

- a) Neutral mutations.
- b) Point mutations.
- c) Beneficial mutations.
- d) Deleterious mutations.

PRACTICE

Which of the following statements about mutations is correct?

- a) Lateral gene transfer is most common in eukaryotes.
- b) Mutations are more common in populations with low fitness.
- c) Many mutations do not affect the fitness of an organism.
- d) Most mutations increase the fitness of an organism.

PRACTICE

Gene trees are evolutionary trees that show the evolutionary lineages of specific genes separate from organisms. Below is a gene tree for the genes that code for opsins in humans. Opsins are the light sensitive proteins in the eyes. Humans have four opsins that are active in visual perception: long-wavelength sensitive (LWS or red-sensitive), medium-wavelength sensitive (MWS or green sensitive), short-wavelength sensitive (SWS or blue sensitive), and rhodopsin (RH, not color sensitive). Which mutational process would be most likely to create a gene tree like this?

- b) Deletion events.
- c) Horizontal gene transfer.
- d) Gene duplication events.

Sexual Reproduction and Recombination

♦	Genetic variation comes from new alleles and new	of alleles.
\	Sexual reproduction: Offspring contain alleles than par	ents.

- ◆ Alleles from different _____ are inherited in different combinations due to:
 - 1. Recombination (crossing over): chromosomes _____ material.
 - 2. Independent assortment: chromosomes are ______ separately.
 - ◆ Allows different genes to evolve ______.
 - ▶ Allows NS to work on different _____ of genes.

each carry ___ of the parent's ___ alleles.

PRACTICE

Natural selection is able to work independently on different genes that are found on the *same* chromosome because of which process?

- a) Mutation.
- b) Recombination.
- c) Independent assortment.
- d) Fertilization.

PRACTICE

Over short time periods, what would you expect to be responsible for creating the most genetic variation in humans?

- a) Horizontal gene transfer.
- b) Natural selection.
- c) Mutation.
- d) Sexual reproduction.