Nutritional factors of Microbial Growth

- •Scientists typically classify organisms into different groups based on _____ nutritional factors:
 - 1 Energy Source: consumed energy source for powering _____ pathways.
 - 2 Electron Source: original molecule supplying electrons to the Electron Transport Chain ().
 - 3 Carbon Source: original carbon-based molecule supplying ______ for creating other cell components.

Energy Source: Phototrophs vs. Chemotrophs

- •Organisms are classified into _____ groups based on their *energy* source:
 - 1 _____trophs: obtain energy from sunlight.
 - 2 Chemotrophs: obtain energy from _____ compounds.

PRACTICE: The prefix photo- indicates that an organism will make use of _____ for energy purposes.

- a) Chemicals.
- b) Organics.
- c) Light.
- d) Inorganics.

Electron Source: Lithotrophs vs. Organotrophs

- •Organisms are be categorized into _____ groups based on their *electron source*.
 - □ Recall: electron source: original molecule supplying electrons to the Electron Transport Chain (______).
 - 1 Lithotrophs: supply ETC with electrons from reduced _____ molecules (Ex. H₂O, Fe²⁺).
 - □ ALL plants are *lithotrophs* because they harvest electrons from splitting water during carbon fixation.
 - 2 Organotrophs: supply ETC with electrons from _____ molecules (Ex. glucose).

Carbon Source: Heterotrophs vs. Autotrophs

- •Microorganisms are classified into _____ groups by their source of *carbon (organic or inorganic)*.
 - □ Recall: **carbon source**: original *carbon-based* molecule supplying carbon for creating other cell components.
 - 1 Autotrophs: use _____ fixation to capture carbon for *making* their own food & other cell components.
 - 2 Heterotrophs: consume & use _____ molecules to supply carbon for creating other cell components.

PRACTICE: Biologists can divide living organisms into two groups: autotrophs and heterotrophs, which differ in ______.

- a) Their method of obtaining energy.
- b) The characteristics of life.
- c) Their mode of inheritance.
- d) The way that they generate ATP.

PRACRTICE: Organisms that use organic molecules as their source of carbon are called:

- a) Archaea.
- b) Chemoautotrophs.
- c) Heterotrophs.
- d) Autotrophs.

PRACTICE: Organisms that use CO₂ as their source of carbon are called

- a) Organotrophs.
- b) Heterotrophs.
- c) Autotrophs.
- d) Chemotrophs.

Reviewing the Nutritional Growth Factors of Microbes

Energy Source				
Phototroph	Obtains enery from			
	Obtains enery from compounds.			
Electron Source				
Litho troph	Supplies ETC with electrons from reduced molecules.			
Organo troph	Supplies ETC with electrons from molecules.			
Carbon Source				
Auto troph	Fixes <i>inorganic</i> CO ₂ to its own molecules/food & supply the cell with carbon.			
Hetero troph	pre-made <i>organic</i> molecules/food to supply the cell with carbon.			

Nutritional Diversity Among Microbes

- •Scientists typically categorize microbes into groups based on a ______ of the 3 key nutritional factors:
 - □ All combinations are *theoretically* possible even though some have no known organisms to date.

PRACTICE: Chemoheterotrophs:

- a) Use sunlight as an energy source.
- b) Use preformed organic molecules as a carbon source.
- c) Use preformed organic molecules as an energy source.
- d) Use inorganic chemicals as an energy source.
- e) B and C.

PRACTICE: Cyanobacteria are a group of photosynthetic bacteria. These bacteria use sunlight as their energy source and carbon dioxide as their carbon source. Cyanobacteria are _______.

a) Chemoautotrophs.

c) Chemoheterotrophs.

b) Photoautotrophs.

d) Photoheterotrophs.

PRACTICE: Humans are:

a) Chemolithoautotrophs.

- c) Chemoorganoheterotrophs.
- b) Photooganoautotrophs.
- d) Chemolithoheterotrophs.

Oxygen Requirements for Microbial Growth

- ●All organisms that utilize chemical energy require a final electron ______ for the Electron Transport Chain.

 □ In many microbes, the final electron acceptor is ______(O₂).
- microbes that require O₂ & grow where it is abundant, called an aerobic environment.
- •Anaerobes: microbes that grow where *little to no* O₂ is present, called an ______ environment.

EXAMPLE: Aerobes vs. Anaerobes.

Oxygen Requirement Classes of Microbes

•Microbes are classified into _____ groups based on their requirement for O₂.

PRACTICE: Organisms that require oxygen for metabolism are referred to as:

- a) Facultative aerobes.
- b) Obligate aerobes.
- c) Facultative anaerobes.
- d) Microaerophiles.

PRACTICE: Organisms that are indifferent to the presence of oxygen are:

- a) Aerotolerant anaerobes.
- b) Facultative anaerobes.
- c) Obligate aerobes.
- d) Microaerophiles.

Introduction to Biofilms

- group of cells encased in a *slime-like* polysaccharide layer _______ to a surface.
 Can be found on virtually ______ surface & can cause serious illness.
 Encased by a polysaccharide matrix of *Extracellular Polymeric Substances* (______).
 Extracellular Polymeric Substances (EPS): sticky matrix of ______ secreted by cells supporting biofilm structure.
 - □ Polymer types include *polysaccharides*, *proteins*, *glycoproteins*, *glycolipids*, & *lipids*.

TOPIC	: PROKARYOTIC MET	<u>ABOLISM</u>				
PRACTICE:		are complex communities of various types of microbes that adhere to surfaces.				
a)	Biofilms.					
b)	Aggregates.					
c)	Colonies.					
d)	Cell morphologies.					
PRACT	Γ ICE : Biofilms can cont	ain which of the follow	ng:			
a)	Bacterial cells.	c)	Archaeal cells.	e) All of the choices are correct.		
b)	Proteins.	d)	Polysaccharides.			