CONCEPT: KREBS CYCLE - _____ Cycle: 3rd stage of aerobic cellular respiration; also known as the Citric Acid Cycle & the TCA Cycle. - □ Oxidizes acetyl-CoA *producing* energy in the form of ATP, NADH, & FADH₂. ## **Phases of The Krebs Cycle** - •Krebs Cycle consists of a series of *multiple* reactions, which can be grouped into _____ phases: - Acetyl-CoA Entry: 2 carbons of Acetyl-CoA enter & react with oxaloacetate, producing ______ - □ NOTE: "CoA" does _____ enter the Krebs Cycle (just the ____ carbons enter). - Citrate Oxidation: Rearrangement & ______ of citrate. - □ Produces of 1 ATP & 2 NADH, & 2 CO₂ molecules. - Oxaloacetate Regeneration: ______ of oxaloacetate by oxidation. - □ Produces 1 NADH & 1 FADH₂ molecule. - •_____ rounds of the Krebs Cycle occur for every 1 glucose molecule (1 round of Krebs Cycle per acetyl-CoA). | CONCEPT: KREBS CYCLE | | | | | | |--|----|-------|-------|-------|-------| | EXAMPLE: How many turns of the Krebs Cycle are needed to completely break down one molecule of glucose? | | | | | | | a) | 2. | b) 3. | c) 1. | d) 4. | e) 5. | PRACTICE: Which product of the Krebs cycle is also used as a reactant in the Krebs cycle? - a) Citrate. - b) ATP. - c) Acetyl-CoA. - d) Oxaloacetate. **PRACTICE:** Taking one molecule of glucose through glycolysis, pyruvate oxidation, and the Krebs cycle generates: - a) 6 CO_2 , 8 NADH, 2 FADH_2 and 4 ATP. - c) 6 CO₂, 10 NADH, 2 FADH₂ and 4 ATP. - b) 6 CO₂, 8 NADH, 1 FADH₂ and 2 ATP. - d) 6 CO₂, 10 NADH, 2 FADH₂ and 2 ATP.