CONCEPT: KREBS CYCLE

- _____ Cycle: 3rd stage of aerobic cellular respiration; also known as the Citric Acid Cycle & the TCA Cycle.
 - □ Oxidizes acetyl-CoA *producing* energy in the form of ATP, NADH, & FADH₂.

Phases of The Krebs Cycle

- •Krebs Cycle consists of a series of *multiple* reactions, which can be grouped into _____ phases:
 - Acetyl-CoA Entry: 2 carbons of Acetyl-CoA enter & react with oxaloacetate, producing ______
 - □ NOTE: "CoA" does _____ enter the Krebs Cycle (just the ____ carbons enter).
 - Citrate Oxidation: Rearrangement & ______ of citrate.
 - □ Produces of 1 ATP & 2 NADH, & 2 CO₂ molecules.
 - Oxaloacetate Regeneration: ______ of oxaloacetate by oxidation.
 - □ Produces 1 NADH & 1 FADH₂ molecule.
- •_____ rounds of the Krebs Cycle occur for every 1 glucose molecule (1 round of Krebs Cycle per acetyl-CoA).

CONCEPT: KREBS CYCLE					
EXAMPLE: How many turns of the Krebs Cycle are needed to completely break down one molecule of glucose?					
a)	2.	b) 3.	c) 1.	d) 4.	e) 5.

PRACTICE: Which product of the Krebs cycle is also used as a reactant in the Krebs cycle?

- a) Citrate.
- b) ATP.
- c) Acetyl-CoA.
- d) Oxaloacetate.

PRACTICE: Taking one molecule of glucose through glycolysis, pyruvate oxidation, and the Krebs cycle generates:

- a) 6 CO_2 , 8 NADH, 2 FADH_2 and 4 ATP.
- c) 6 CO₂, 10 NADH, 2 FADH₂ and 4 ATP.
- b) 6 CO₂, 8 NADH, 1 FADH₂ and 2 ATP.
- d) 6 CO₂, 10 NADH, 2 FADH₂ and 2 ATP.