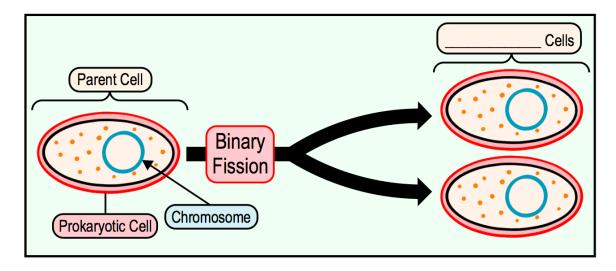

Introduction to Bacterial Plasmids

•_	: small molecules of circular, double-stranded DNA replicated independently of the cell's chromosome.
	□ Contain genes that are typically required for the cell to survive.
	□ Replicated by the cell's <i>Polymerase.</i>
•_	: a cell loses its plasmid which can happen spontaneously, or it can be induced chemically.

EXAMPLE: Plasmid curing with chemical induction.

PRACTICE: Which of these is NOT true regarding bacterial plasmids?

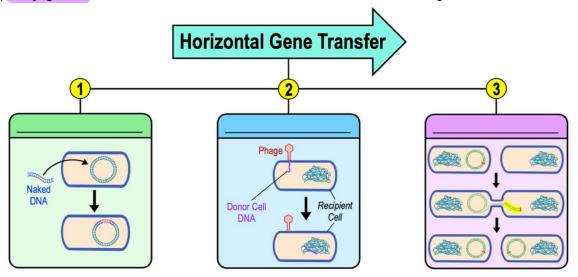

- a) Bacterial plasmids are found in all bacteria.
- b) Bacterial plasmids are not essential for bacterial life.
- c) Bacterial plasmids replicate independently of the bacterial chromosome.
- d) Bacteria can lose their plasmids in a process called "plasmid curing".
- e) Bacterial plasmids are replicated by the same DNA machinery that replicated the bacterial chromosome.

PRACTICE: Which types of genes are commonly found in bacterial plasmids?

- a) Genes that encode for proteins used in cellular respiration.
- b) Genes that encode for proteins used in DNA replication.
- c) Genes that encode for antibiotic resistance.
- d) Genes that encode for cell envelope/membrane development.

Binary Fission

- Recall: Prokaryotes replicate by the process of binary fission BUT Eukaryotes do _____.
- •_____ Fission: prokaryotic asexual reproduction; one cell divides to form ____ new daughter cells.
 - □ **Daughter cells:** either of the two _____ cells that form after a cell *divides*.



PRACTICE: The cellular process by which two cells arise from one is known as:

- a) Conjugation.
- b) Meiosis.
- c) Binary fission.
- d) Mitosis.

Horizontal Gene Transfer

- Recall: Horizontal gene transfer is between 2 organisms that are _____ direct descendants of one another.
 - □ Allows cells to quickly acquire new traits & drives genetic diversity among organisms.
- •There are known mechanisms of *horizontal gene transfer* in bacteria:
 - 1) Transformation: horizontal gene transfer via ______ of free (naked) DNA in the environment by the cell.
 - 2) Transduction: horizontal DNA transfer between cells mediated by a ______ virus.
 - 3) Conjugation: _____ horizontal DNA transfer between cells during cell-to-cell contact.

PRACTICE: Which of the following is not a type of horizontal gene transfer?

- a) Transduction.
- b) Transformation.
- c) Transamination.
- d) Conjugation.

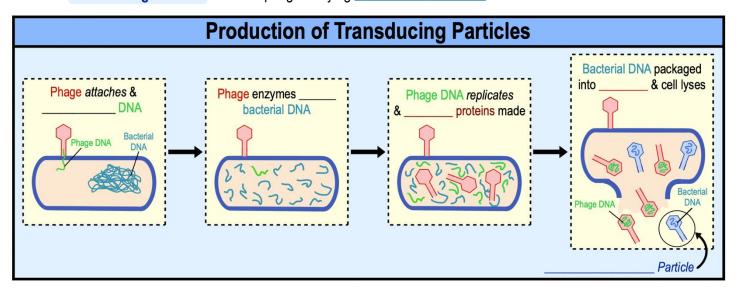
Bacterial Transformation

- Recall: **Transformation**: horizontal gene transfer by the uptake of free (naked) DNA in the environment by the cell.
- •In order for a cell to transform DNA, it MUST be a _____ cell.
 - □ Competent Cells: have the ______ to transform DNA from the environment.

Co	ompetent vs	Competent Cells
I'm totally competent!!	Naked	I'm NOT competent!!

•Cells can be _____ competent or induced by chemical treatment.

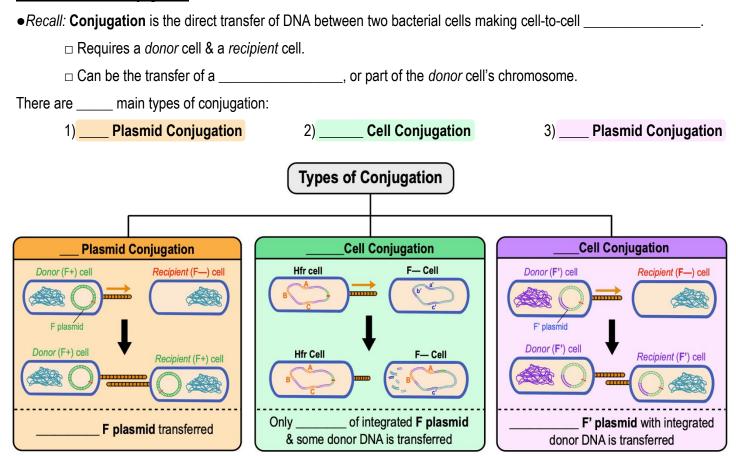
PRACTICE: What does it mean when a bacterial cell is *naturally competent?*


- a) The bacterial cell is able to transform its chromosomal DNA into RNA.
- b) The bacterial cell is able to transform DNA from their environment.
- c) The bacterial cell is able to degrade viral DNA from attacking viruses.
- d) The bacterial cell is able to take in naked DNA and incorporate that DNA into its genome.
- e) A and C.
- f) B and D.

PRACTICE: Bacterial cells can become competent in two ways, which are:

- a) Spontaneously.
- b) Instinctively.
- c) Horizontally.
- d) Induced.
- e) A and D.
- f) A and C.
- g) B and C.

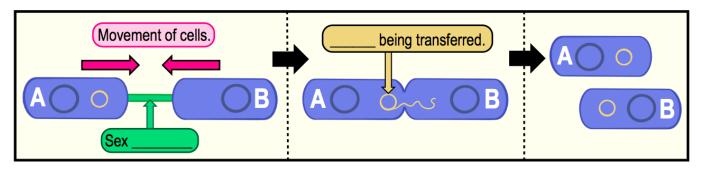
Transduction


- Recall: Transduction: horizontal DNA transfer between cells mediated by a bacteriophage virus (or phages).
 - bacterial obligate intracellular parasite made of DNA or RNA packed into a protein coat.
 - □ Phage infects cell, replicates, & cell so new phage particles are released.
- Transduction results from an _____ where bacterial DNA is packaged into the phage creating a transducing particle.
 - □ **Transducing Particle:** *defective* phage carrying DNA instead of its own.

PRACTICE: Transduction is a form of horizontal gene transfer which requires a carrier for the genetic information being transferred. What is this carrier and what is it made of?

- a) Transduction particle made of a human virus carrying bacterial DNA.
- b) Transformation particle made of bacteriophage carrying human DNA.
- Transduction particle made of a bacteriophage carrying bacterial DNA.
- d) Transduction particle made of a bacteriophage carrying viral DNA.

<u>Introduction to Conjugation</u>

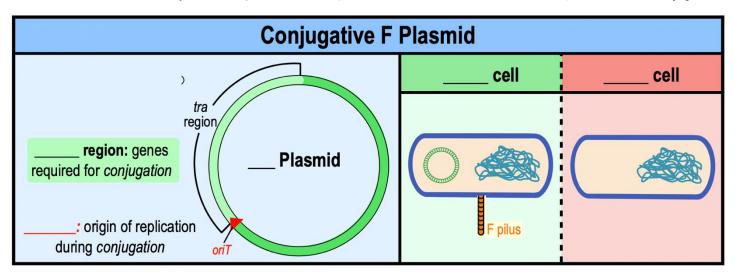

PRACTICE: How is conjugation different from the two other forms of horizontal gene transfer, transformation and transduction?

- a) Conjugation directly transfers DNA from donor to recipient cell.
- b) Conjugation requires a phage to transfer the DNA between cells.
- c) Conjugation requires a donor and a recipient cell.
- d) Conjugation allows the recipient cell to take in free DNA from the environment.
- e) A and D.
- f) B and C.

Sex Pilus

•	Pilus (Conjugation Pilus): connects two cells for a special type of DNA transfer.				
		_: process of transferring DNA from one ba	cterial cell to another by direct contact.		
	☐ Transferred DNA can add a ne	w function to a cell (for example	to antibiotics).		

EXAMPLE: A Sex pilus brings two cells together to directly transfer genetic material.


PRACTICE: Which of the following is NOT a function of pili?

- a) Gliding motility of cells.
- b) Conjugation (DNA transfer).
- c) Antibiotic resistance.
- d) Twitching motility of cells.
- e) All are functions of pili.

- •Conjugation requires the presence of a special type of plasmid called a *conjugative plasmid*.
 - plasmids: plasmids that direct their own transfer to a recipient cell via *conjugation*.

F Plasmid

- •_____ (Fertility) Plasmid: the best studied example of a conjugative plasmid (discovered in E. coli).
 - Cell: a cell that contains the entire F Plasmid (donor cell) that synthesizes the F pilus for conjugation.
 - Cell: a cell that does NOT contain the entire F plasmid (recipient cell).
 - □ F– cell may contain a *portion* of the F plasmid BUT does _____ have an F pilus to initiate conjugation.

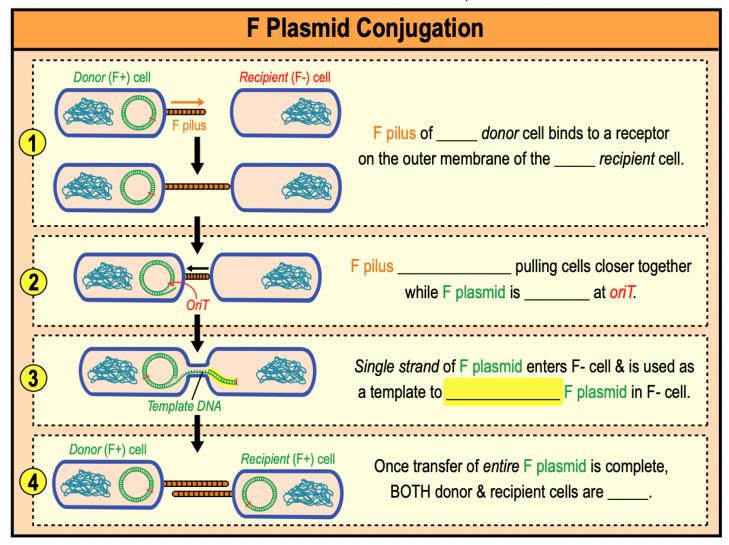
PRACTICE: During conjugation, the ____ cell transfers its ____ to the recipient cell.

a) F+; chromosome

d) F-; plasmid

b) F+; plasmid

e) None of the above


c) F-; chromosome

PRACTICE: What is the purpose of the conjugative plasmid in conjugation?

- a) Causes the bacterial cell to begin binary fission.
- b) Directs the process of conjugation.
- c) Carries the genes required for conjugation.
- d) Carries the genes for the transducing particle.
- e) A and D.
- f) B and C.

Mechanism of F Plasmid Conjugation in E. coli

•Transfer of the F Plasmid from an F+ cell to an F- cell involves a series of steps:

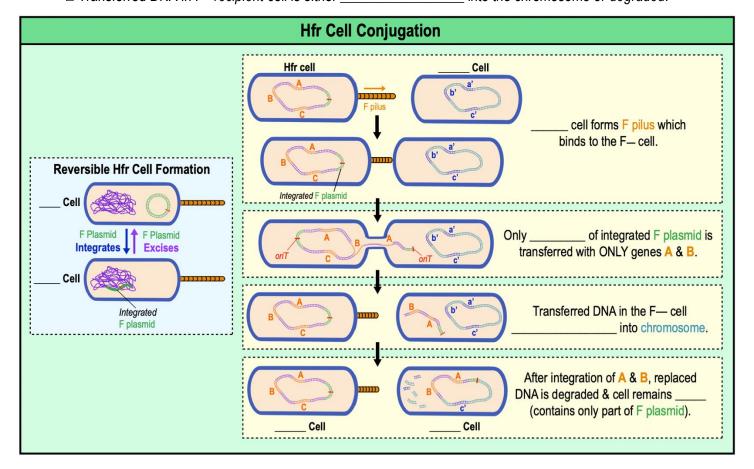
PRACTICE: What is the process where DNA is transferred from one bacterial cell to another through a pilus?

- a) Horizontal gene transfer by conjugation.
- b) Horizontal gene transfer by transduction.
- c) Horizontal gene transfer by transformation.
- d) Vertical gene transfer by transduction.
- e) Vertical gene transfer by transformation.

PRACTICE: Which of the following statements about conjugation is true?

- a) Transferring DNA between cells in conjugation requires a virus carrier.
- b) The donor and recipient cell must be in direct contact (touching) to transfer DNA.
- c) Conjugation can only occur between bacteria of the same species.
- d) Conjugation can occur with or without a conjugative plasmid.

PRACTICE: Which of the following statements about conjugation is false?


- i. Conjugation is a form of horizontal gene transfer.
- ii. Conjugation forms a bridge between two bacterial cells called a plasmid.
- iii. Conjugation involves the transfer of genetic information via bacteriophages.
- a) i only.
- b) ii only.
- c) iii only.
- d) i and ii only.
- e) ii and iii only.
- f) i and iii only.

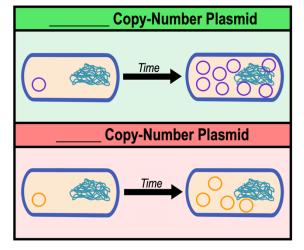
PRACTICE: For a bacterium to be able to conjugate it must possess a _____ with genes that encode a _____.

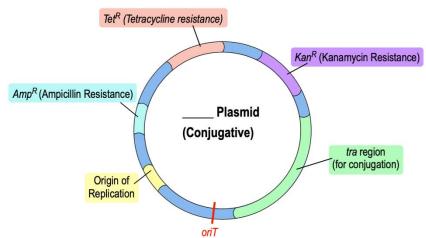
- a) Nucleoid; plasmid.
- b) Plasmid; pilus.
- c) Nucleoid; pilus.
- d) Pilus; plasmid.

Hfr Cell Conjugation

●F plasmids have the	ability to <i>integrate</i> & <i>excise/remove</i> itself from the host chromosome.		
 ◆Hfr (<u>H</u>igh <u>F</u>requency of <u>R</u>ecombine 	nation) cells: have an F plasmid	into their chromosome.	
□ Hfr cells are the donor of	ells in the transfer of	DNA via conjugation.	
●Conjugation of an Hfr cell's chron	nosomal DNA is SIMILAR to F plasmid	conjugation in <i>E. coli.</i>	
●Hfr cells make F pilus to conjuga	te with F- cells, BUT entire integrated	plasmid is NOT transferred (<i>recipient</i> stays)	
□ Only small	of the donor Hfr cell's chromo	osomal DNA & F plasmid are transferred.	
□ Transferred DNA in F– I	recipient cell is either	into the chromosome or degraded	

PRACTICE: Hfr strains of bacteria:


- a) Do not have an F plasmid.
- b) Have an F plasmid.
- c) Have an F factor integrated in the bacterial chromosome.
- d) Have a partial F plasmid as a linear fragment in the cytoplasm.


PRACTICE: What is transferred between two bacterial cells in Hfr conjugation?

- a) A small portion of the integrated F plasmid from the Hfr donor cell.
- b) A small, random portion of the Hfr donor's cells chromosome.
- c) A small portion of the Hfr donor cell's chromosome and integrated F plasmid.

Plasmids

- __: circular double-stranded DNA molecules with an origin of replication allowing them to replicate in a cell. □ *High copy-number* plasmids replicate _____ in a cell & *low-copy-number* plasmids replicate _____. □ Carry various genes, some of which provide cells the ability to ______ a particular environment. • Resistance Plasmids (_____ Plasmids): encode genes that confer resistance to antibiotics (R genes).
 - □ Most are *conjugative* plasmids containing genes required for DNA transfer by conjugation.

