- **Nervous system** network of nerve cells that transmit signals throughout the body
 - □ **Neuron** major cell of the nervous system, capable of sending and receiving electrical and chemical signals
 - □ Glia support and protect neurons, their role is still not well understood

- Central nervous system (CNS) division of the nervous system composed of the brain and spinal cord
- Peripheral nervous system (PNS) nerves and ganglia outside of the brain and spinal cord

- Neurons transmit electrical signals, and can translate them into chemical signals that they release to other neurons
 - □ Neurons translate the chemical signals they receive into electrical signals
 - □ **Cell body** (**soma**) contains the nucleus, and is the site of the majority of protein synthesis
 - □ **Axon hillock** connects cell body to axon
 - □ **Axon** long projection from the cell body that transmits electrical signal, like a wire
 - □ **Dendrites** branched projections that receive signals from other neurons

- Synapse connection between an axon terminal and dendrites
- **Neurotransmitters** chemical signal released from vesicles to the synapse

- Central nervous system (CNS) integrates information it receives from the body, and coordinates responses
 - □ **Brain** organ that acts as the center of the nervous system
 - □ **Spinal cord** bundle of neurons and glia that extends from the brain down the back

- Peripheral nervous system (PNS) sends signals to and from the brain and spinal cord
 - □ **Ganglion** cluster of neuron cell bodies (called nuclei in the CNS)
 - □ **Nerves** bundle of axons in the PNS (called tracts in the CNS)
 - **Sensory neurons** nerves that transmit sensory information, ultimately to the brain and spinal cord
 - **Motor neurons** nerves that project from spine to stimulate effector organs like muscles and glands
- Interneurons transmits information between neurons, connect sensory and motor neurons, main neuron in brain

- *Electric current* flow of electric charge
- **Electric potential** electric potential energy per unit of charge, measured in volts (V)
 - □ **Voltage** difference in electric potential between two points, results from differences in charge

EXAMPLE:

- *Electrochemical gradient* chemical concentration gradient and electric potential gradient across a membrane
- Membrane potential difference in electric potential between interior and exterior of a cell, separated by membrane
 - □ **Resting potential** baseline membrane potential of a cell
 - □ *Hyperpolarization* membrane potential becomes more negative
 - □ **Depolarization** membrane potential becomes more positive

Ion Concentration Gradients Na Extracellular CI Intracellular

- *Ion channels* protein channels that form a transmembrane pore, allowing for the passage of a specific ion
 - □ Critical in establishing membrane potentials, and transmission of electric signals in neurons
 - □ **Leak channels** K⁺ channels that help maintain the negative resting potential of neurons
 - □ **Gated ion channels** ion channels that open or close in response to stimuli
 - Ligand-gated ion channel opens in response to ligand binding
 - **Voltage-gated ion channel** opens in response to a specific membrane potential

EXAMPLE:

- Na/K-ATPase (sodium-potassium pump) actively pumps 3Na+ out of the cell, and brings 2K+ into the cell
 - □ Plays a crucial role in establishing resting potential of neurons
- Equilibrium potential (Eion) membrane potential at which there is no net movement of an ion in or out of the cell
 - □ Leak channels allow K⁺ to leak out of cell along concentration gradient, until it reaches equilibrium potential

- Graded potential shifts in membrane potential that vary in magnitude, codes information in signal amplitude
- Action potential (AP) transient shift in membrane potential, codes a binary, all-or-none signal
 - □ Signal intensity is coded by the frequency of action potentials
- Phases of the action potential:
- 1. Resting state cell is at resting potential, voltage-gated Na+ and K+ channels are closed
- 2. Rising phase depolarization of the membrane potential causes some voltage-gated Na+ channels to open
 - ☐ *Threshold* membrane potential at which action potential will be triggered
 - □ If threshold potential is reached, all voltage-gated Na+ channels open, and Na+ rushes into the cell
 - □ Influx of cations depolarizes membrane potential
- 3. Falling phase Na+ channels are inactivated, while voltage-gated K+ channels open, causing K+ to rush out of the cell
 - □ Efflux of cations causes repolarization of the membrane potential
- 4. Undershoot Na+ channels close, while some K+ channels remain open causing hyperpolarization
 - □ **Refractory period** time in which another action potential cannot be generated due to inactivated Natchannels

- Axon diameter influences the speed of propagation of an action potential, larger diameters have lower resistance
- Myelin fatty substance used to insulate axons and speed up action potential propagation
 - □ **Myelin sheathe** myelin covering over an axon, neither continuous nor generated by a single glial cell
 - □ **Node of Ranvier** gap in myelin sheathe that allows ion channels to exchange ions with the extracellular fluid
- *Oligodendrocyte* glial cell of the CNS that can myelinate multiple axons
- Schwann cell glial cell of the PNS that myelinates a single axon

EXAMPLE:

Saltatory conduction – propagation of the action potential along myelinated axons, from one node of Ranvier to the
next

- **Synapse** junction between neurons that allows them to pass signals between cells
 - □ Signals (almost) always travel from the presynaptic cell to the postsynaptic cell
 - □ Signals can be chemical (neurotransmitters), or electrical (gap junction)
 - □ Voltage-gated Ca²⁺ channels on presynaptic axon terminal open in response to depolarization from AP
 - □ **Synaptic vesicles** store neurotransmitters and release the into the synapse in response to Ca²⁺
 - □ **Synaptic cleft** small space between the axon terminal of the presynaptic cell and the postsynaptic cell

- Ionotropic receptor membrane receptor that acts by opening an ion channel
 - □ **Ligand-gated ion channels** open in response to ligand binding, like neurotransmitters
- Metabotropic receptor membrane receptor that acts through second messengers
 - □ Often G protein coupled receptors, can have a wide variety of effects

- Neuron signals frequently result in a change in membrane potential of the postsynaptic cell
 - □ **Excitatory postsynaptic potential** (**EPSP**) depolarization of the membrane potential, increasing chance of AP
 - EPSPs that sum together can depolarize membrane potential to the threshold of an action potential
 - Na+ channels that will trigger an action potential are located in the axon hillock
 - □ *Inhibitory postsynaptic potential* (*IPSP*) hyperpolarization of membrane potential, decreasing chance of AP
- **Temporal summation** PSPs occur in succession, and adding together to a larger depolarization

EXAMPLE:

• **Spatial summation** - PSPs occur in close proximity, and adding together to a larger depolarization **EXAMPLE**:

CONCEPT: NELIDONS

CONCEL 1. NEGRONO
 Neurotransmitters are signaling molecules that cross the synapse and bind to receptors
□ Neurotransmitters exert their effects based on the receptors they bind
- A single neurotransmitter will have different types of receptors that can bind it
□ Neurotransmitters must be cleared from the synapse after release, either degraded or reabsorbed
• Acetylcholine – neurotransmitter used by parasympathetic nervous system, and at neuromuscular junction
□ Neuromuscular junction – synapse between motor neurons and muscles, have ionotropic nicotine receptors
- Acetylcholine has excitatory effect at neuromuscular junction, causing muscle contraction
□ Heart muscle has muscarinic metabotropic receptors, innervated parasympathetic nervous system
- Acetylcholine has inhibitory effect in some parts of parasympathetic nervous system and heart
□ Acetylcholinesterase digests acetylcholine in the synapse
• Amino acids – includes glutamine, glycine, and GABA
□ Glutamate – major excitatory neurotransmitter of the CNS
□ <i>GABA</i> (γ-aminobutyric acid) – major inhibitory neurotransmitter of the CNS
EXAMPLE:
• Monoamines – contain an amine and an aromatic ring, derived from aromatic amino acids
□ Serotonin – major neurotransmitter of the enteric nervous system, involved in feelings of happiness

- □ **Dopamine** catecholamine involved in reward pathways of the brain
- □ **Norepinephrine** catecholamine hormone and neurotransmitter used in sympathetic nervous system
- Neuropeptides peptide neurotransmitters including substance P, neuropeptide Y, ghrelin, and endorphins
 - □ *Endorphins* endogenous opioids, suppress pain and induce euphoria
- NO can act as a neurotransmitter, and diffuses widely, doesn't obey pre- to postsynaptic transmission rule
- Neurotoxins poisons that are destructive to nerve tissue

