- Certain processes are common to the development of multicellular organisms:
- Cell division the timing and location of cell division is crucial to proper development and is highly regulated
 - □ Mitotic regulation involves checkpoints and social control

- Cell differentiation the process of becoming a specialized type of cell
 - □ Cell fate what a cell will become in the course of development
- Stem cells undifferentiated cells
 - □ Meristems stem cells in plants located at areas that continue to develop throughout the plants life
 - □ Animals use stem cells to repair wounds, replace cells, and to create cells of the immune system

- Cell-cell interactions cells signal other cells to move, divide, differentiate, and die
 - □ Differentiating cells can induce differentiation in nearby cells

EXAMPLE:

- Some cells must move around, rearranging their positions, or breaking away to move to an entirely new location
- Plant cells can expand their size to cause changes in the shape and form of a plant

EXAMPLE:

- Programmed cell death is an important part of development
 - $\hfill\Box$ Apoptosis is the most common type of cell death in animal development

- Differential expression different patterns of gene expression in different types of cells lead to their differentiation
 - □ Cell differentiation results from differential expression, not changes in genetic makeup
 - □ Chemical signals cause differential gene expression
 - ☐ Gene expression patterns are modulated by:
 - transcriptional regulation, RNA splicing, translational regulation, and post translational modification
 - □ Regulatory transcription factors used by eukaryotes to influence transcription
- Genetic equivalence cells have the same genes

EXAMPLE:

- Pattern formation complex organization of cell fates in space and time, controlled by genes
- *Morphogen* molecule used to indicate cell position via concentration gradient during pattern formation
 - □ Morphogen concentration is highest around the cells emitting them, and decrease over distance
 - □ Cells respond to local concentrations of morphogens to produce specific responses, and achieve specific fates
 - □ Morphogens set up the major body axes

- Body Axes:
 - □ *Anterior* toward the head
 - □ **Posterior** towards the tail
 - □ **Dorsal** toward the back
 - □ Ventral toward the belly

EXAMPLE:

- Complex body plans develop over time, and chemical signals come and go to fine-tune development
- Morphogens □ gap genes □ pair-rule genes □ segment polarity genes □ Hox genes □ effector genes

- Tool-kit genes the small subset of genes that control and organisms development
- Homeotic genes genes that control the development of anatomical structures
- Hox genes highly conserved genes that help control development along the anterior-posterior axis
 - □ Activated after segments form, they determine the specific segment structures, like wings or antennae

EXAMPLE:

- Development is a highly conserved process
 - □ Development is directly linked to evolution
 - □ Many different animals use the same genes and chemical signals to govern body plan development
 - □ Many of the same chemical signals are used repeatedly during the course of development, to different effects

