CONCEPT: EUKARYOTIC POST-TRANSCRIPTIONAL REGULATION

Eukary	votes regulate de	ene expression a	at the post-trans	scriptional level in	ways:

- 1 Alternative RNA _____ results in different protein products from the same mRNA transcript.
 - 2) RNA processing adds a 5' _____ & poly-____ tail to mRNA for protection from RNA degrading enzymes.
 - 3 mRNA can be tagged for degradation or transcription is blocked by small noncoding _____ molecules.

1) Alternative RNA Splicing

- Recall: Eukaryotes require _____-transcriptional modifications like RNA splicing which can alter gene expression.
 - □ **Alternative splicing**: when different mRNA molecules are produced from the _____ premature RNA.
 - □ The _____: the RNA-protein complex that removes introns from premature RNA.

EXAMPLE: Alternative RNA splicing results in different protein products from the same premature RNA.

PRACTICE Alternative RNA splicing has been estimated to occur in more than 95% of multi-exon genes. Which of the following is **not** an evolutionary advantage of alternative RNA splicing?

- a) Alternative RNA splicing increases diversity without increasing genome size.
- b) Different protein variants can be expressed by the same gene in different tissues.
- c) Alternative RNA splicing creates shorter mRNA transcripts.
- d) Different protein variants can be expressed by the same gene during different stages of development.

CONCEPT: EUKARYOTIC POST-TRANSCRIPTIONAL REGULATION

2) mRNA Protection in the Cytoplasm

- •mRNA transcripts must be transported to the ______ where they can be translated by ribosomes.
 - ☐ The cytoplasm has many RNA degrading enzymes destroy *foreign* viral RNA molecules.
- •The _____' cap & poly-A _____ of mRNA molecules ______ the mRNA from degradation by enzymes.

EXAMPLE: mRNA is protected from degradation by cytoplasmic enzymes with a 5' cap and poly-A tail.

3) RNA Interference

- •RNA ______ (RNA__): process of small noncoding RNAs blocking translation of target mRNA molecules.
 - □ **Small noncoding RNA:** short strands of RNA that have a *complementary sequence* to their mRNA target.
- •There are _____ possible scenarios that turn gene expression OFF:

EXAMPLE: RNA Interference can block ribosome binding or recruit cellular enzymes for mRNA degradation.

CONCEPT: EUKARYOTIC POST-TRANSCRIPTIONAL REGULATION

PRACTICE: Which of the following statements best describes the function of RNAi?

- a) Small RNA molecules interfere with translation by targeting ribosomes for degradation.
- b) Small DNA molecules interfere with mRNA molecules by blocking their ability to bind to a ribosome.
- c) Small RNA molecules interfere with translation by targeting specific tRNA molecules
- d) Small RNA molecules interfere with translation by blocking a target mRNA's ability to bind to a ribosome.

Types of Small Noncoding RNAs

•There are ____ classes of RNAs involved in RNAi:

_			
1	DNIA	(2) amall interfering DNA a /	١
ш,	RNAs	(2)small interfering RNAs ()	1
\smile			,

- □ BOTH types bind to a target mRNA by complimentary base paring & turns _____ expression of that gene.
- •The only difference between microRNAs & siRNAs is the structure of their precursor form:
- □ mircoRNAs have a ______-stranded precursor & siRNAs have a _____-stranded precursor

EXAMPLE: RNA interference by two types of small noncoding RNAs (microRNAs & siRNAs).

PRACTICE: Which of the following best describes siRNA?

- a) A short double-stranded RNA with one strand that can complimentarily bind to and inactivate an mRNA.
- b) A single-stranded RNA with internal complementary base pairs that allow it to fold into a cloverleaf pattern.
- c) A portion of rRNA which is a component of the large and small ribosomal subunits.
- d) A molecule, known as Dicer, that can degrade or cut RNA sequences.