- Central nervous system (CNS) division of the nervous system composed of the brain and spinal cord
 - □ *Gray matter* mostly consists of neuron cell bodies
 - □ White matter mostly consists of myelinated axons
 - Tract axon bundle in the CNS
 - □ Ventricles cavities in the brain where cerebrospinal fluid is produced
 - □ Central canal hollow tub in spine
 - □ Blood-brain barrier endothelium barrier that separates the extracellular fluid of CNS from blood
 - Astrocytes major glial cells of the CNS, form the blood-brain barrier

- Peripheral nervous system (PNS) nerves and ganglia outside of the brain and spinal cord
 - □ *Ganglia* cluster of cell bodies
 - □ **Nerve** axon bundle in the PNS

- Peripheral nervous system gathers information for, and relays commands from the CNS
 - □ **Somatic nervous system** (motor system) controls voluntary movement
 - Afferent division carries sensory information from sensory receptors to the CNS
 - *Efferent division* carries signals from the CNS to the body

EXAMPLE:

- □ *Autonomic nervous system* regulates unconscious and involuntary functions
 - Controls organs of endocrine, cardiovascular, digestive, and excretory systems
 - Sympathetic division fight-or-flight, neurons release norepinephrine
 - Parasympathetic division rest-and-digest, neurons release acetylcholine
 - Enteric division controls organs of digestive tract, pancreas and gallbladder

- Reflex arc neural pathway controlling involuntary, instantaneous movement in response to stimulus
 - □ Sensory neurons carry information from stimulus into dorsal side of spine
 - □ Synapse directly on motor neuron, or on interneuron that synapses with motor neuron

EXAMPLE:

□ Motor neuron leaves ventral side of spine, and synapses on muscle to generate movement

- The brain is organized into different regions and structures
 - □ *Forebrain* includes the olfactory bulb, cerebrum, and hypothalamus
 - □ *Midbrain* portion of brainstem
 - □ *Hindbrain* includes medulla oblongata, pons, and cerebellum

EXAMPLE:

- Cerebrum large, outer part of the brain that includes the cortex, and other subcortical structures like the hippocampi
 - □ Cerebrum is divided laterally between two hemispheres that connect via the corpus callosum
 - □ **Corpus callosum** large flat bundle of axons that transmits information between the hemispheres
 - □ **Cerebral cortex** outer layer of the cerebrum composed of gray matter
 - **Frontal lobe** contains areas that are involved in decision making, and the primary motor cortex
 - Parietal lobe involved in sensory information processing, contains primary somatosensory cortex
 - **Temporal lobe** contains areas involved in hearing, language, and higher level visual processing
 - Occipital lobe contains visual cortex, and other areas involved in processing visual information

- Lateralization differences in cognitive processes between hemispheres, like language being left-hemisphere dominant
 - □ Functions are localized to different specialized areas of the brain
 - □ Broca's area area in left frontal lobe involved in speech production
 - □ Wernike's area area in left temporal lobe involved in language comprehension

EXAMPLE:

- Cerebral cortex has sensory, motor, and association areas
 - □ **Sensory areas** receive and process sensory information
 - Visual, auditory, and somatosensory cortices receive information from the eyes, ears, and body
 - □ *Motor areas* process voluntary motor movements
 - Primary motor cortex is parallel to primary somatosensory cortex
 - □ **Association areas** function to extract meaning from sensory information to generate perception of the world

- *Diencephalon* part of forebrain that contains the thalamus and hypothalamus
 - □ *Thalamus* acts as a relay center for the cortex, plays an important role in visual processing
 - □ Hypothalamus involved in homeostasis, links nervous and endocrine system interacting with pituitary gland

EXAMPLE:

- *Limbic system* set of brain structures in the fore- and midbrain that are involved in memory, behavior, emotion
 - □ *Hippocampus* involved in learning and memory, especially long-term and spatial memory formation
 - □ *Amygdala* involved in emotional processing

• Cerebellum – involved in integrating motor functions, and fine motor movements

- Brain stem contains the pons and medulla oblongata, and is continuous with the spinal cord
 - □ **Pons** involved in swallowing, breathing, eye movement, posture, and dream production
 - □ *Medulla oblongata* involved in maintaining heart rate, breathing, and blood pressure

- Neuroplasticity neurons can reorganize themselves, modifying and forming new connections
- Synaptic plasticity ability of synapses to strengthen or weaken based on activity patterns

• Neurogenesis - growth of new nervous tissue, mostly occurs during embryogenesis

- □ Sensory memory transiently (~1 second) holds sensory information
- □ **Short-term memory** limited ability to recall a small number of items of information without rehearsal
- □ Long-term memory information and knowledge that can be stored and recalled for a long time
- Long-term potentiation long-term strengthening of a synapse based on activity patterns
 - □ Thought to be a cellular mechanism behind learning and memory

