- Muscle system organ system that includes skeletal, cardiac, and smooth muscle
 - □ *Muscle* tissue capable of contracting through the interaction of actin and myosin proteins
 - Myocytes muscle cells, specialized types are found in skeletal, cardiac, and smooth muscle

- **Skeleton** support structure of an organism, works with muscles for support and locomotion
 - □ *Exoskeleton* external skeleton, like those of arthropods
 - □ **Endoskeleton** internal skeleton composed of mineralized tissue, like bone
 - **Bones** rigid, mineralized organ
- Skeletal muscles connect to bones allowing for voluntary movements of the body
- Locomotion movement, like that produced by the interaction of muscles and bones

- **Muscle fiber** long, thin, multinucleate myocyte containing many myofibrils
 - □ **Myofibrils** rod-like protein structures made primarily of actin and myosin
 - Sarcomere contractile unit of striated muscle, chained together to form myofibrils
- **Striated muscle** muscle tissue that contains repeated units of sarcomeres

- Sarcomeres are made of thick and thin myofilaments that interact by sliding past each other
 - □ **Myofilaments** filaments that make up myofibrils, made of actin and myosin
 - Actin protein that forms the thin filaments of the sarcomere
 - Myosin protein that forms the thick filaments of the sarcomere
 - □ **Z-disc** end of a sarcomere where thin filaments attach

- Sliding-filament model mechanism of muscle contraction involving thin and thick filaments sliding past each other
 - □ Actin filaments have myosin binding sites along their length that are critical to filament sliding
 - *Tropomyosin* protein wrapped around actin, covering myosin binding sites
 - *Troponin* Ca²⁺-sensitive protein that interacts with tropomyosin
 - □ Troponin binds Ca²⁺, it causes tropomyosin to move and expose the myosin binding site on the actin filaments
 - □ Myosin head with ATP binds the exposed actin filament, and hydrolyzes ATP
 - Release of the phosphate group triggers the **power stroke**, moving the head, and causing filament sliding
 - ADP is released and a new ATP is bound, causing the myosin head to release the actin filament

- **Motor unit** single motor neuron and the muscle fibers in controls
 - □ **Neuromuscular junction** connection between a motor neuron and muscle fiber

- Muscle fibers of a motor unit contract as a group
 - □ Nerves release acetylcholine at the neuromuscular junction to stimulate muscle contraction
 - □ Muscle fibers binding acetylcholine depolarizes the membrane, leading to an action potential
 - □ **Transverse tubules** indentation in the membrane that move action potentials to the sarcoplasmic reticulum
 - □ **Sarcoplasmic reticulum** (**SR**) special type of smooth endoplasmic reticulum found in myocytes
 - Action potentials cause SR to release Ca2+ to bind to troponin
 - Ca2+ must be pumped out of the cytosol, back into the SR

- Single action potential results in a twitch of the muscle fibers
 - □ Action potential frequency translates into degree of muscle tension
 - □ **Tetanus** sustained muscle contraction from twitches fusing together
- Fast-twitch fibers contract rapidly, but tire quickly; rely on glycolysis for ATP rather than aerobic respiration
- Slow-twitch fibers contract slowly due to myosin's rate of ATP hydrolysis, but can sustain longer contractions
 - □ **Myoglobin** oxygen binding protein in muscle, used to store oxygen

- Voluntary muscles controlled by conscious thought
 - □ **Skeletal muscle** voluntary muscle made of long myofibrils
- *Involuntary muscles* controlled by unconscious signals, regulated by the autonomic nervous system
 - □ **Smooth muscle** involuntary muscles that don't contain myofibrils
 - Line blood vessels, and digestive tract, responsible for peristalsis
 - □ **Cardiac muscle** involuntary muscles, contain sarcomeres, but have a branched structure
 - Intercalated disks allow action potentials to spread through cardiac muscle

- Vertebrate endoskeletons are composed of bone, cartilage, tendons, and ligaments
- Bones composed of cells in a hard extracellular matrix containing calcium
 - □ Osteoblasts synthesize and secrete bone matrix
 - □ Osteoclast breaks down and reabsorbs bone tissue for remodeling and repair
 - $\hfill \square$ Medullary cavity – cavity in bone in which red and yellow bone marrow is stored

EXAMPLE:

TYPES OF BONES

BONE MARROW

- Cartilage elastic tissue containing collagen proteins
- Tendons connective tissue that links muscle to bone
- Ligaments connective tissue that links bones
- Joints connection between bones that allows for specific types of movement
 - □ Ball and socket joints, like the hips and shoulders allow for many types of rotation
 - ☐ Hinge joints limit movement to a single plane

- Flexors a muscle that bends a limb, and pull bones closer together
- Extensors muscle that straightens, or extends a limb

