Introduction to Bacterial Cell Walls

●Water pressure	a bacterial cell is typically <i>higher</i> than its surroundings.		
□ Requires the ce	ll to have a	_ layer around it.	
●Cell Wall: semi-rigid stru	ctural layer located on the	of the cell membrane & is part of the cell envelope.	
⊓ Cell	· collection of the cell	wall_cell_membrane & outer_membrane (if present)	

EXAMPLE: The cell wall protects the cell from rupturing from high water pressure.

PRACTICE: Which is (are) true concerning the cell wall of prokaryotes?

- a) It determines the shape of the bacteria.
- c) It prevents the bacteria from bursting.
- b) It is part of the cell envelope.

d) All of the choices are true.

Peptidoglycan

● Peptidoglycan: a rigid, mesh-like *polysaccharide* & *protein* mix that is the main component of _____ cell walls.

□ Provides _____ support (or maintains *rigidity*) for the cell.

EXAMPLE: Peptidoglycan is the primary structural component of the cell wall.

PRACTICE: The peptidoglycan molecule is responsible for the:

- a) Entry and exit of molecules into and from the cell.
- b) Flexibility of the cytoplasmic membrane.
- c) Motility of the bacterial cell.
- d) Genetic characteristics of the bacterial cell.
- e) Semi-rigid cell wall structure of prokaryotes.

Gram-Positive & Gram-Negative Bacteria

- Bacterial cells are categorized based on whether or not they take up the _____ stain.
 - □ **Gram Stain** *differentiates* bacteria based on differences in their *cell* ______.
- Gram-positive bacteria ______ the stain; HOWEVER, gram-negative bacteria do _____ absorb the stain.

EXAMPLE: The Gram Stain differentiates Gram Positive & Gram-Negative bacteria.

PRACTICE: The Gram stain works because of differences in the _____ of bacteria.

- a) Genetic characteristics.
- c) Cell walls.

b) Cell membranes.

d) Capsules.

Types of Bacterial Cell Walls

- •The two types of bacterial cells are grouped by the structure of their cell walls:
 - 1) **Gram-Positive Bacteria:** have a ______ peptidoglycan layer.
 - 2) **Gram-Negative Bacteria:** only have a ______ peptidoglycan layer & a complex *outer membrane*.

EXAMPLE: Gram positive vs. Gram negative cell walls.

The Glycocalyx: Capsules & Slime Layers

●Most bacteria are surrounded by a layer of a sticky gel-like substance called the		
Glycocalyx: a complex poly_	layer surrounding the outside of a cell.	
□ Promotes	of cells to solid surfaces & to other cells.	
	the cell from dehydration & can collect nutrients from the environment for energy	

•There are different categories of the glycocalyx based on the _____ of its structure.

PRACTICE: What is the function of the glycocalyx in bacterial cells?

- a) Attachment of cells to surfaces and other cells.
- b) Protein synthesis.
- c) Phagocytosis of other cells.
- d) DNA replication.

PRACTICE: ______ is the slime-like layer of polysaccharides on the outer surface of bacterial cells.

- a) The outer membrane.
- b) The cytoplasm.
- c) The glycocalyx.
- d) The periplasm.
- e) The S-layer.

Capsules vs. Slime Layers

- •There are ____ categories of the *glycocalyx*:
 - 1) Capsules: highly organized & dense layer of polysaccharides _____ anchored to the cell.
 - 2) _____ Layers: unorganized layer of polysaccharides easily removable from the cell.

●The *glycocalyx* is important for the formation of _____.

PRACTICE: _____ are an organized layer of polysaccharides tightly anchored to the cell wall.

- a) Capsules.
- b) Periplasms.
- c) Slime-layers.
- d) Teichoic acids.
- e) Lipopolysaccharides.

PRACTICE: Which of the following is not a function of slime layers and capsules:

a) Protection against dehydration.

c) Attachment to other cells & solid surfaces.

b) Collect nutrients from its surroundings.

d) Anchors the outer membrane to peptidoglycan.

Pili

- •The surface of bacterial cells can have relatively ______, filamentous protein structures called pili.
 - □ Pili (singular Pilus): protein filaments that _____ from the cell surface & can have varied functions.

Functions of Pili

•Pili typically number in only 1-2 per cell & generally have _____ primary functions:

Motility: the ability of an organism to ______.

PRACTICE: Which of these are true about pili?

- a) Pili are short filaments of pilin on the surface of bacterial cells that allow neighboring cells to adhere to one another.
- b) Pili allow cells to "crawl" across a surface.
- c) Pili are short filaments on the surface of archaea cells that allow neighboring cells to adhere to one another.
- d) Pili allow cells to share genetic information through a process called DNA transfer or conjugation.
- e) A and B.
- f) B and C.
- g) A and C.
- h) B and D.

Fimbriae

	●Fimbriae: filaments of p	ilin protein that are	than pili & extend from the cell surface
--	---------------------------	-----------------------	--

□ Function to adhere cells to one another or to surfaces & are involved in formation of ______.

EXAMPLE: Fimbriae adhere to each other connecting cells in a biofilm.

PRACTICE: The presence of fimbriae on a bacterial cell is most likely to have a critical role in

- a) Conjugation.
- b) Chemotaxis.
- c) Biofilm formation.
- d) DNA replication.

Endospores

 Recall: John Tyndall discovered a heat-resistant form of bacterial cells which 	were later termed <i>endospores</i> .
--	---------------------------------------

• Endospores: a _____ cell produced by some bacteria that are resistant to damaging conditions.

□ Resistant to conditions like extreme ______, *toxic* chemicals & ______ depletion.

□ Endospores are _____ a form replication, they are a form of *survival*, it starts & ends with a *single* cell.

•_____ Cell: a normal, replicating cell that is not dormant.

EXAMPLE: Vegetative cell forms endospores when nutrients are depleted.

• Endospores are usually only produced by the gram-_____ bacteria Bacillus & Clostridium.

•Endospores are *dormant* like winter clothes in the summer in the <u>Back</u> of your <u>Closet</u> (when temp. is <u>positive</u> Celsius).

PRACTIC: Endospores are:

a) A dormant cell-type.

b) A type of vegetative cell.

c) A form of reproduction.

d) Sensitive to damaging environmental conditions.

PRACTICE: Formation of endospores ______.

- a) Allows bacterial reproduction.
- b) Occurs when the cell is in thriving environmental conditions.
- c) Is called germination.
- d) Can be triggered by adverse environmental conditions.
- e) Occurs in all bacterial cells.

PRACTICE: What 2 bacterial genera produce endospores?

- a) Escherichia and Bacillus.
- b) Staphylococcus and Streptococcus.
- c) Clostridium and Bacillus.
- d) Enterobactor and Clostridium.
- e) Citrobacter and Staphylococcus.